Return to search

Trans-regulation of \(Trypanosoma\) \(brucei\) variant surface glycoprotein (VSG) mRNA and structural analysis of a \(Trypanosoma\) \(vivax\) VSG using X-ray crystallography / Trans-regulierung der mRNA des variablen Oberflächenglykoprotein (VSG) von \(Trypanosoma\) \(brucei\) und strukturelle Analyse eines \(Trypanosoma\) \(vivax\) VSG mittels Kristallstrukturanalyse

African trypanosomes are unicellular parasites that cause nagana and sleeping sickness in livestock and man, respectively. The major pathogens for the animal disease include Trypanosoma vivax, T. congolense, and T. brucei brucei, whereas T. b. gambiense and T. b. rhodesiense are responsible for human infections. Given that the bloodstream form (BSF) of African trypanosomes is exclusively extracellular, its cell surface forms a critical boundary with the host environment. The cell surface of the BSF African trypanosomes is covered by a dense coat of immunogenic variant surface glycoproteins (VSGs). This surface protein acts as an impenetrable shield that protects the cells from host immune factors and is also involved in antibody clearance and antigenic variation, which collectively ensure that the parasite stays ahead of the host immune system. Gene expression in T. brucei is markedly different from other eukaryotes: most genes are transcribed as long polycistronic units, processed by trans-splicing a 39-nucleotide mini exon at the 5′ and polyadenylation at the 3′ ends of individual genes to generate the mature mRNA.
Therefore, gene expression in T. brucei is regulated post-transcriptionally, mainly by the action of RNA binding proteins (RBPs) and conserved elements in the 3′ untranslated regions (UTR) of transcripts. The expression of VSGs is highly regulated, and only a single VSG gene is expressed at a time from one of the ~15 subtelomeric domains termed bloodstream expression sites (BES). When cells are engineered to simultaneously express two VSGs, the total VSG mRNA do not exceed the wild type amounts. This suggests that a robust VSG mRNA balancing mechanism exists in T. brucei. The present study uses inducible and constitutive expression of ectopic VSG genes to show that the endogenous VSG mRNA is regulated only if the second VSG is properly targeted to the ER. Additionally, the endogenous VSG mRNA response is triggered when high amounts of the GFP reporter with a VSG 3′UTR is targeted to the ER. Further evidence that non-VSG ER import signals can efficiently target VSGs to the ER is presented. This study suggests that a robust trans-regulation of the VSG mRNA is elicited at the ER through a feedback loop to keep the VSG transcripts in check and avoid overshooting the secretory pathway capacity.
Further, it was shown that induction of expression of the T. vivax VSG ILDat1.2 in T. brucei causes a dual cell cycle arrest, with concomitant upregulation of the protein associated with differentiation (PAD1) expression. It could be shown that T. vivax VSG ILDat1.2 can only be sufficiently expressed in T. brucei after replacing its native GPI signal peptide with that of a T. brucei VSG. Taken together, these data indicate that inefficient VSG GPI anchoring and expression of low levels of the VSG protein can trigger differentiation from slender BSF to stumpy forms. However, a second T. vivax VSG, ILDat2.1, is not expressed in T. brucei even after similar modifications to its GPI signals. An X-ray crystallography approach was utilized to solve the N-terminal domain (NTD) structure of VSG ILDat1.2. This is first structure of a non-T. brucei VSG, and the first of a surface protein of T. vivax to be solved. VSG ILDat1.2 NTD maintains the three-helical bundle scaffold conserved in T. brucei surface proteins. However, it is likely that there are variations in the architecture of the membrane proximal region of the ILDat1.2 NTD and its CTD from T. brucei VSGs. The tractable T. brucei system is presented as a model that can be used to study surface proteins of related trypanosome species, thus creating avenues for further characterization of trypanosome surface coats. / Afrikanische Trypanosomen sind einzellige Parasiten, die Nagana in Nutzvieh und die Schlafkrankheit im Menschen verursachen. Zu den Hauptverursachern der Tierkrankheit gehören Trypanosoma vivax, T. congolense und T. brucei brucei, während T. b. gambiense und T. b. rhodesiense für Infektionen im Menschen verantwortlich sind. Da die Blutstromform (BSF) der afrikanischen Trypanosomen rein extrazellulär vorkommt, bildet die Zelloberfläche eine kritische Grenzregion mit der Wirtsumgebung. Die Zelloberoberfläche der BSF afrikanischer Trypanosomen ist mit einem dichten Mantel an immunogenen variablen Oberflächenglykoproteinen (variant surface glycoprotein, VSG) umgeben. Dieses Oberflächenprotein dient als Barriere zum Schutz gegen Faktoren des Wirtsimmunsystems und spielt ebenfalls eine Rolle in Antikörper-Clearance und antigener Variation, welche gemeinsam dafür sorgen, dass der Parasit dem Wirtsimmunsystem stets einen Schritt voraus bleibt. Die Genexpression von T. brucei weist dezidierte Unterschiede im Vergleich zu anderen Eukaryoten auf: Die meisten Gene werden als lange polyzystronische Einheiten transkribiert, die durch trans-Splicing eines Miniexons aus 39 Nukleotiden am 5′ und Polyadenylierung am 3′ Ende der individuellen Gene prozessiert wird.
Daher wird die Genexpression in T. brucei posttranskriptionell reguliert, zumeist durch RNA Bindeproteine (RBPs) und konservierte Elemente in der 3′ untranslatierten Region (UTR). Die Expression der VSGs ist stark reguliert, so wird zu einer gegebenen Zeit stets nur ein VSG Gen aus einer von ~15 Subtelomerregionen, die Blutstrom Expressionsorte (bloodstream expression sites, BES) genannt werden, exprimiert. Zellen, die gentechnisch manipuliert wurden um zwei VSGs zu exprimieren, produzieren die gleiche Menge an VSG mRNA wie Wildtyp Zellen. Dies deutet auf die Existenz eines robusten Mechanismus zur Regulierung der Gesamt-VSG mRNA Menge in T. brucei hin. Diese Arbeit verwendet induzierbare sowie konstitutive Expression eines ektopischen VSG Gens um zu zeigen, dass die endogene VSG mRNA nur reguliert wird, wenn das zweite VSG zum ER gelangt. Außerdem wird die endogene VSG mRNA Antwort auch ausgelöst, wenn hohe Mengen eines GFP Reporters, der eine VSG 3′UTR enthält, zum ER geleitet wird. Weiterhin, wird gezeigt, dass ER Importsignale anderer Proteine VSGs effizient zum ER dirigieren können. Das Ergebnis dieser Studie deutet darauf hin, dass eine Rückkopplungsschleife am ER eine robuste trans-Regulation der VSG mRNA auslöst, die die VSG Transkripte limitiert und somit eine Überlastung des sekretorischen Wegs verhindert.
Weiterhin konnte gezeigt werden, dass es nach Induktion der Expression des T. vivax VSGs ILDat1.2 in T. brucei zu einem doppelten Zellzyklusarrest mit gleichzeitiger Hochregulation der Expression des protein associated with differentation (PAD1) kam und dass dieses T. vivax VSG nur nach Austausch des GPI Signalpeptids durch das eines T. brucei VSGs effizient exprimiert werden konnte. Zusammengenommen suggerieren diese Daten, dass eine ineffiziente GPI-Verankerung und wenig abundante Expression des VSGs die Differenzierung der sogenannten slender BSF zur sogenannten stumpy Form einleiten kann. Ein zweites T. vivax VSG, ILDat2.1, konnte hingegen auch nach Austausch des GPI Signals nicht in T. brucei exprimiert werden. Mit Hilfe der Röntgenstrukturanalyse wurde die Struktur der N-terminalen Domäne (NTD) des ILDat1.2 VSGs gelöst. Es handelt sich hierbei um die erste Proteinstruktur eines VSGs, welches nicht aus T. brucei stammt und die erste Struktur eines Oberflächenproteins von T. vivax. Das in T. brucei Oberflächenproteinen konservierte drei-Helix Grundgerüst ist auch in der NTD des ILDat1.2 VSGs enthalten. Die Architektur der Membranproximalen Gegend der IlDat1.2 NTD und CTD unterscheiden sich aber vermutlich von der der T. brucei VSGs. Das leicht handhabbare T. brucei System bietet somit ein geeignetes Modell um die Oberflächenproteine anderer afrikanischer Trypanosomen Spezies zu untersuchen und eröffnet neue Wege zur Charakterisierung ihrer Oberflächenmäntel.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:24177
Date January 2024
CreatorsAroko, Erick Onyango
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-nc/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds