Return to search

4D Microstructural Characterization of Electromigration and Thermal Aging Damage in Tin-Rich Solder Joints

abstract: As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original microstructure of the solder joint, including void volume, grain orientation, and grain size. While numerous studies have investigated the post-mortem effects of EM and have tested a range of current densities and temperatures, none have been able to analyze how the same joint evolves from its initial to final microstructure. This thesis focuses on the study of EM, thermal aging, and thermal cycling in Sn-rich solder joints. Solder joints were either of controlled microstructure and orientation or had trace alloying element additions. Sn grain orientation has been linked to a solder joints’ susceptibility to EM damage, but the precise relationship between orientation and intermetallic (IMC) and void growth has not been deduced. In this research x-ray microtomography was used to nondestructively scan samples and generate 3D reconstructions of both surface and internal features such as interfaces, IMC particles, and voids within a solder joint. Combined with controlled fabrication techniques to create comparable samples and electron backscatter diffraction (EBSD) and energy-dispersive spectroscopy (EDS) analysis for grain orientation and composition analysis, this work shows how grain structure plays a critical role in EM damage and how it differs from damage accrued from thermal effects that occur simultaneously. Unique IMC growth and voiding behaviors are characterized and explained in relation to the solder microstructures that cause their formation and the possible IMC-suppression effects of trace alloying element addition are discussed. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2019

Identiferoai:union.ndltd.org:asu.edu/item:54978
Date January 2019
ContributorsBranch Kelly, Marion (Author), Chawla, Nikhilesh (Advisor), Ankit, Kumar (Committee member), Antoniswamy, Aravindha (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format148 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds