Return to search

A satellite and ash transport model aided approach to assess the radiative impacts of volcanic aerosol in the Arctic

The Arctic radiation climate is influenced substantially by anthropogenic and natural aerosols. There have been numerous studies devoted to understanding the radiative impacts of anthropogenic aerosols (e.g. those responsible for producing the Arctic haze phenomenon) and natural aerosols (e.g. dust and smoke) on the Arctic environment, but volcanic aerosols have received less attention. Volcanic eruptions occur frequently in the Arctic and have the capacity to be long duration, high intensity events, expelling large amounts of aerosol-sized ash and gases, which form aerosols once in the atmosphere. Additionally, volcanic eruptions deposit ash, which can alter the surface reflectivity, and remain to influence the radiation balance long after the eruptive plume has passed over and dissipated. The goal of this dissertation is to quantify the radiative effects of volcanic aerosols in the Arctic caused by volcanic plumes and deposits onto ice and snow covered surfaces.

The shortwave, longwave, and net direct aerosol radiative forcing efficiencies and atmospheric heating/cooling rates caused by volcanic aerosol from the 2009 eruption of Mt. Redoubt were determined by performing radiative transfer modeling constrained by NASA A-Train satellite data. The optical properties of volcanic aerosol were calculated by introducing a compositionally resolved microphysical model developed for both ash and sulfates. Two compositions of volcanic aerosol were considered in order to examine a fresh, ash rich plume and an older, ash poor plume. The results indicate that environmental conditions, such as surface albedo and solar zenith angle, can influence the sign and the magnitude of the radiative forcing at the top of the atmosphere and at the surface. Environmental conditions can also influence the magnitude of the forcing in the aerosol layer. For instance, a fresh, thin plume with a high solar zenith angle over snow cools the surface and warms the top of the atmosphere, but the opposite effect is seen by the same layer over ocean. The layer over snow also warms more than the same plume over seawater. It was found that plume aging can alter the magnitude of the radiative forcing. For example, an aged plume over snow at a high solar zenith angle would warm the top of the atmosphere and layer by less than the fresh plume, while the aged plume cools the surface more. These results were compared with those reported for other aerosols typical to the Arctic environment (smoke from wildfires, Arctic haze, and dust) to demonstrate the importance of volcanic aerosols. It is found that the radiative impacts of volcanic aerosol plumes are comparable to those of other aerosol types, and those compositions rich in volcanic ash can have greater impacts than other aerosol types.

Volcanic ash deposited onto ice and snow in the Arctic has the potential to perturb the regional radiation balance by altering the surface reflectivity. The areal extent and loading of ash deposits from the 2009 eruption of Mt. Redoubt were assessed using an Eulerian volcanic ash transport and dispersion model, Fall3D, combined with satellite and deposit observations. Because observations are often limited in remote Arctic regions, we devised a novel method for modeling ash deposit loading fields for the entire eruption based on best-fit parameters of a well-studied eruptive event. The model results were validated against NASA A-train satellite data and field measurements reported by the Alaska Volcano Observatory. Overall, good to moderate agreement was found. A total cumulative deposit area of 3.7 X 10^6 km2 was produced, and loadings ranged from ~7000 ± 3000 gm-2 near the vent to <0.1 ± 0.002 gm-2 on the outskirts of the deposits. Ash loading histories for total deposits showed that fallout ranged from ~5 – 17 hours. The deposit loading results suggest that ash from short duration events can produce regionally significant deposits hundreds of kilometers from the volcano, with the potential of significantly modifying albedo over wide regions of ice and snow covered terrain.

The solar broadband albedo change, surface radiative forcing, and snowmelt rates associated with the ash deposited from the 2009 eruption of Mt. Redoubt were calculated using the loadings from Fall3D and the snow, ice, and aerosol radiative models. The optical properties of ash were calculated from Mie theory, based on size information recovered from the Fall3D model. Two sizes of snow were used in order to simulate a young and old snowpack. Deposited ash sizes agree well with field measurements. Only aerosol-sized ashes in deposits were considered for radiative modeling, because larger particles are minor in abundance and confined to areas very close to the vent. The results show concentrations of ash in snow range from ~ 6.9x10^4 – 1x10^8 ppb, with higher values closer to the vent and lowest at the edge of the deposits, and integrated solar albedo reductions of ~ 0 – 59% for new snow and ~ 0 – 85% for old snow. These albedo reductions are much larger than those typical for black carbon, but on the same order of magnitude as those reported for volcanic deposits in Antarctica. The daily mean surface shortwave forcings associated with ash deposits on snow ranged from 0 – 96 Wm-2 from the outmost deposits to the vent. There were no significantly accelerated snowmelts calculated for the outskirts of the deposits. However, for areas of higher ash loadings/concentrations, daily melt rates are significantly higher (~ 220 – 320%) because of volcanic ash deposits.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53404
Date08 June 2015
CreatorsYoung, Cindy L.
ContributorsDufek, Josef, Sokolik, Irina, Curry, Judy
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0028 seconds