Spelling suggestions: "subject:"radiative transfer model"" "subject:"radiatives transfer model""
1 |
Investigation of Thin Cirrus Cloud Optical and Microphysical Properties on the Basis of Satellite Observations and Fast Radiative Transfer ModelsWang, Chenxi 16 December 2013 (has links)
This dissertation focuses on the global investigation of optically thin cirrus cloud optical thickness (tau) and microphysical properties, such as, effective particle size (D_(eff)) and ice crystal habits (shapes), based on the global satellite observations and fast radiative transfer models (RTMs). In the first part, we develop two computationally efficient RTMs simulating satellite observations under cloudy-sky conditions in the visible/shortwave infrared (VIS/SWIR) and thermal inferred (IR) spectral regions, respectively. To mitigate the computational burden associated with absorption, thermal emission and multiple scattering, we generate pre-computed lookup tables (LUTs) using two rigorous models, i.e., the line-by-line radiative transfer model (LBLRTM) and the discrete ordinates radiative transfer model (DISORT).
The second part introduces two methods (i.e., VIS/SWIR- and IR-based methods) to retrieve tau and D_(eff) from satellite observations in corresponding spectral regions of the two RTMs. We discuss the advantages and weakness of the two methods by estimating the impacts from different error sources on the retrievals through sensitivity studies.
Finally, we develop a new method to infer the scattering phase functions of optically thin cirrus clouds in a water vapor absorption channel (1.38-µm). We estimate the ice crystal habits and surface structures by comparing the inferred scattering phase functions and numerically simulated phase functions calculated using idealized habits.
|
2 |
On a generalised G-function in radiative transfer theory of turbid vegetation mediaOtto, Sebastian, Trautmann, Thomas 27 September 2017 (has links)
The simplified approach of a turbid medium is commonly applied in theory of radiative transfer for vegetation media. Oriented planar model leaves are assumed whose normals are always confined to the upper half space. These orientations are described with the help of so-called leaf normal distribution functions (LNDFs) so that, within the scope of the turbid theory, a radiative transfer equation can be derived in which the so called Ross-Nilson function G occurs explicitly. This function, as introduced by J. Ross, is based on geometrical considerations and is therefore called geometry function, or shortly G-function (GF). To solve the latter equation G must be known. GF is calculated from the LNDF and was originally derived in an explicit and analytical form for strongly simplified LNDFs only. We demonstrated in a previous work that GF can be calculated also for other standard LNDFs. Based on the latter LNDFs we introduce here a generalised trigonometric LNDF and present the respective formula for G. / Die vereinfachte Annahme eines turbiden Mediums findet in der Theorie des Strahlungstransfers für Vegetationsmedien breite Anwendung. Darin werden orientierte ebene Modellblätter angenommen, deren Normalen stets in den oberen Halbraum weisen. Diese Orientierungen werden mittels sogenannter Blattnormalenverteilungen (BNV) beschrieben, so dass sich im Rahmen der turbiden Theorie eine Strahlungstransfergleichung ableiten lässt, in der die sogenannte Ross-Nilson-Funktion G explizit auftritt. Diese von J. Ross eingeführte Funktion basiert auf geometrischen Betrachtungen und wird daher auch Geometriefunktion genannt oder kurz G-Funktion. G muss zur Lösung der vorigen Gleichung bekannt sein. Es leitet sich aus der BNV ab und konnte in expliziter sowie analytischer Form bislang lediglich für stark vereinfachte BNV hergeleitet werden. Wie wir an dieser Stelle in einem früheren Beitrag gezeigt haben, lässt sich G darüber hinaus für andere standardisierte BNV berechnen. Auf letzteren aufbauend führen wir jetzt eine verallgemeinerte trigonometrische BNV ein und präsentieren die entsprechende Formel für G.
|
3 |
RADIATIVE TRANSFER MODELING FOR QUANTIFYING LUNAR SURFACE MINERALS, PARTICLE SIZE AND SUBMICROSCOPIC IRON (SMFe)Li, Shuai 16 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The main objective of this work is to better quantify lunar surface minerals (agglutinate, clinopyroxene, orthopyroxene, plagioclase, olivine, ilmenite, and volcanic glass), particle sizes and the abundance of SMFe from the lunar soil characterization consortium (LSCC) dataset with our improved model based on Hapke's radiative transfer theory. The model is implemented for both forward and inverse modeling. Hapke's radiative transfer theory is implemented in the inverse model means Newton's method and least squares are jointly used to solve nonlinear questions rather than commonly used look-up Table (LUT). Although the effects of temperature and surface topography are incorporated into the implementation to improve the model performance for application of lunar spacecraft data, these effects cannot be extensively addressed in the current work because of the use of lab measured reflectance data. Our forward radiative transfer model (RTM) results show that the correlation coefficients between modeled and measured spectra are over 0.99. For the inverse model, the distribution of the calculated particle sizes is all within their measured range. The range of modeled SMFe for highland samples is 0.01% - 0.5 % and for mare samples is 0.03% - 1 %. The linear trend between SMFe and ferromagnetic resonance (Is) for all the LSCC samples is consistent with laboratory measurements. For quantifying lunar mineral abundances, the results show that the R-squared for the training samples (Is/FeO <= 65) are over 0.65 with plagioclase having highest correlation (0.94) and pyroxene the lowest (0.68). In the future work, the model needs to be improved for handling more mature lunar soil samples.
|
4 |
Modelling 3D Forest Structure for Improved Retrieval of Forest Biophysical Properties / Modelling 3D Forest Structure for Improved Retrieval of Forest Biophysical PropertiesJanoutová, Růžena January 2017 (has links)
Hlavním cílem práce bylo zlepšení kvantitativních odhadů vegetačních parametrů smrkových porostů pomocí spektrálních simulací trojrozměrného modelu přenosu záření. Prvně bylo potřeba vytvořit přesný 3D model smrku. Implementace přesného 3D modelu smrku pro parametrizaci celých lesních porostů je v současné době výpočetně nemožné, bylo tedy nutné tento 3D model smrku zjednodušit. Přesný 3D model smrku společně s dostupnými leteckými daty sloužil pro nalezení optimálního zjednodušení. Optimální model vedl ke kompromisu mezi výpočetní náročností a přesností výsledné odrazivosti z modelu přenosu záření. Následně byl optimální model smrku využit pro odhady vegetačních parametrů ze satelitních snímků. Přesnost odhadů byla ověřena oproti pozemním měřením odhadovaných parametrů. Na závěr byly porovnány výsledky z odhadů vegetačních parametrů pomocí optimálního 3D modelu smrku s výsledky z tradičního přístupu pomocí modelů stromu s geometricky jednodušími tvary korun.
|
5 |
A satellite and ash transport model aided approach to assess the radiative impacts of volcanic aerosol in the ArcticYoung, Cindy L. 08 June 2015 (has links)
The Arctic radiation climate is influenced substantially by anthropogenic and natural aerosols. There have been numerous studies devoted to understanding the radiative impacts of anthropogenic aerosols (e.g. those responsible for producing the Arctic haze phenomenon) and natural aerosols (e.g. dust and smoke) on the Arctic environment, but volcanic aerosols have received less attention. Volcanic eruptions occur frequently in the Arctic and have the capacity to be long duration, high intensity events, expelling large amounts of aerosol-sized ash and gases, which form aerosols once in the atmosphere. Additionally, volcanic eruptions deposit ash, which can alter the surface reflectivity, and remain to influence the radiation balance long after the eruptive plume has passed over and dissipated. The goal of this dissertation is to quantify the radiative effects of volcanic aerosols in the Arctic caused by volcanic plumes and deposits onto ice and snow covered surfaces.
The shortwave, longwave, and net direct aerosol radiative forcing efficiencies and atmospheric heating/cooling rates caused by volcanic aerosol from the 2009 eruption of Mt. Redoubt were determined by performing radiative transfer modeling constrained by NASA A-Train satellite data. The optical properties of volcanic aerosol were calculated by introducing a compositionally resolved microphysical model developed for both ash and sulfates. Two compositions of volcanic aerosol were considered in order to examine a fresh, ash rich plume and an older, ash poor plume. The results indicate that environmental conditions, such as surface albedo and solar zenith angle, can influence the sign and the magnitude of the radiative forcing at the top of the atmosphere and at the surface. Environmental conditions can also influence the magnitude of the forcing in the aerosol layer. For instance, a fresh, thin plume with a high solar zenith angle over snow cools the surface and warms the top of the atmosphere, but the opposite effect is seen by the same layer over ocean. The layer over snow also warms more than the same plume over seawater. It was found that plume aging can alter the magnitude of the radiative forcing. For example, an aged plume over snow at a high solar zenith angle would warm the top of the atmosphere and layer by less than the fresh plume, while the aged plume cools the surface more. These results were compared with those reported for other aerosols typical to the Arctic environment (smoke from wildfires, Arctic haze, and dust) to demonstrate the importance of volcanic aerosols. It is found that the radiative impacts of volcanic aerosol plumes are comparable to those of other aerosol types, and those compositions rich in volcanic ash can have greater impacts than other aerosol types.
Volcanic ash deposited onto ice and snow in the Arctic has the potential to perturb the regional radiation balance by altering the surface reflectivity. The areal extent and loading of ash deposits from the 2009 eruption of Mt. Redoubt were assessed using an Eulerian volcanic ash transport and dispersion model, Fall3D, combined with satellite and deposit observations. Because observations are often limited in remote Arctic regions, we devised a novel method for modeling ash deposit loading fields for the entire eruption based on best-fit parameters of a well-studied eruptive event. The model results were validated against NASA A-train satellite data and field measurements reported by the Alaska Volcano Observatory. Overall, good to moderate agreement was found. A total cumulative deposit area of 3.7 X 10^6 km2 was produced, and loadings ranged from ~7000 ± 3000 gm-2 near the vent to <0.1 ± 0.002 gm-2 on the outskirts of the deposits. Ash loading histories for total deposits showed that fallout ranged from ~5 – 17 hours. The deposit loading results suggest that ash from short duration events can produce regionally significant deposits hundreds of kilometers from the volcano, with the potential of significantly modifying albedo over wide regions of ice and snow covered terrain.
The solar broadband albedo change, surface radiative forcing, and snowmelt rates associated with the ash deposited from the 2009 eruption of Mt. Redoubt were calculated using the loadings from Fall3D and the snow, ice, and aerosol radiative models. The optical properties of ash were calculated from Mie theory, based on size information recovered from the Fall3D model. Two sizes of snow were used in order to simulate a young and old snowpack. Deposited ash sizes agree well with field measurements. Only aerosol-sized ashes in deposits were considered for radiative modeling, because larger particles are minor in abundance and confined to areas very close to the vent. The results show concentrations of ash in snow range from ~ 6.9x10^4 – 1x10^8 ppb, with higher values closer to the vent and lowest at the edge of the deposits, and integrated solar albedo reductions of ~ 0 – 59% for new snow and ~ 0 – 85% for old snow. These albedo reductions are much larger than those typical for black carbon, but on the same order of magnitude as those reported for volcanic deposits in Antarctica. The daily mean surface shortwave forcings associated with ash deposits on snow ranged from 0 – 96 Wm-2 from the outmost deposits to the vent. There were no significantly accelerated snowmelts calculated for the outskirts of the deposits. However, for areas of higher ash loadings/concentrations, daily melt rates are significantly higher (~ 220 – 320%) because of volcanic ash deposits.
|
6 |
MAX-DOAS measurements of bromine explosion events in McMurdo Sound, AntarcticaHay, Timothy Deane January 2010 (has links)
Reactive halogen species (RHS) are responsible for ozone depletion and oxidation of gaseous elemental mercury and dimethyl sulphide in the polar boundary layer, but the sources and mechanisms controlling their catalytic reaction cycles are still not completely understood. To further investigate these processes, ground– based Multi–Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)
observations of boundary layer BrO and IO were made from a portable instrument platform in McMurdo Sound during the Antarctic spring of 2006 and 2007. Measurements of surface ozone, temperature, pressure, humidity, and wind speed and direction were also made, along with fourteen tethersonde soundings and the collection of snow samples for mercury analysis.
A spherical multiple scattering Monte Carlo radiative transfer model (RTM) was developed for the simulation of box-air-mass-factors (box-AMFs), which are used to determine the weighting functions and forward model differential slant column densities (DSCDs) required for optimal estimation. The RTM employed the backward adjoint simulation technique for the fast calculation of box-AMFs
for specific solar zenith angles (SZA) and MAX-DOAS measurement geometries. Rayleigh and Henyey-Greenstein scattering, ground topography and reflection, refraction, and molecular absorption by multiple species were included. Radiance and box-AMF simulations for MAX-DOAS measurements were compared with nine other RTMs and showed good agreement.
A maximum a posteriori (MAP) optimal estimation algorithm was developed to retrieve trace gas concentration profiles from the DSCDs derived from the DOAS analysis of the measured absorption spectra. The retrieval algorithm was validated by performing an inversion of artificial DSCDs, simulated from known NO2 profiles. Profiles with a maximum concentration near the ground were generally well reproduced, but the retrieval of elevated layers was less accurate. Retrieved partial vertical column densities (VCDs) were similar to the known values, and investigation of the averaging kernels indicated that these were the most reliable retrieval product. NO₂ profiles were also retrieved from measurements made at an NO₂ measurement and profiling intercomparison campaign in Cabauw, Netherlands in July 2009.
Boundary layer BrO was observed on several days throughout both measurement periods in McMurdo Sound, with a maximum retrieved surface mixing ratio of 14.4±0.3 ppt. The median partial VCDs up to 3km were 9.7±0.07 x 10¹² molec cm ⁻ in 2007, with a maximum of 2.3±0.07 x 10¹³ molec cm⁻², and 7.4±0.06 x 10¹² molec cm⁻² in 2006, with a maximum of 1.05 ± 0.07 x 1013 molec cm⁻². The median mixing ratio of 7.5±0.5 ppt for 2007 was significantly higher than
the median of 5.2±0.5 ppt observed in 2006, which may be related to the more extensive first year sea ice in 2007. These values are consistent with, though lower than estimated boundary layer BrO concentrations at other polar coastal sites. Four out of five observed partial ozone depletion events (ODEs) occurred during strong winds and blowing snow, while BrO was present in the boundary layer in
both stormy and calm conditions, consistent with the activation of RHS in these two weather extremes. Air mass back trajectories, modelled using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, indicated that the events were locally produced rather than transported from other sea ice zones. Boundary layer IO mixing ratios of 0.5–2.5±0.2 ppt were observed on several days. These values are low compared to measurements at Halley and Neumayer Stations, as well as mid-latitudes. Significantly higher total mercury concentrations observed in 2007 may be related to the higher boundary layer BrO
concentrations, but further measurements are required to verify this.
|
7 |
Leaf Area Index (LAI) monitoring at global scale : improved definition, continuity and consistency of LAI estimates from kilometric satellite observationsKandasamy, Sivasathivel 13 March 2013 (has links) (PDF)
Monitoring biophysical variables at a global scale over long time periods is vital to address the climatechange and food security challenges. Leaf Area Index (LAI) is a structure variable giving a measure of the canopysurface for radiation interception and canopy-atmosphere interactions. LAI is an important variable in manyecosystem models and it has been recognized as an Essential Climate Variable. This thesis aims to provide globaland continuous estimates of LAI from satellite observations in near-real time according to user requirements to beused for diagnostic and prognostic evaluations of vegetation state and functioning. There are already someavailable LAI products which show however some important discrepancies in terms of magnitude and somelimitations in terms of continuity and consistency. This thesis addresses these important issues. First, the nature ofthe LAI estimated from these satellite observations was investigated to address the existing differences in thedefinition of products. Then, different temporal smoothing and gap filling methods were analyzed to reduce noiseand discontinuities in the time series mainly due to cloud cover. Finally, different methods for near real timeestimation of LAI were evaluated. Such comparison assessment as a function of the level of noise and gaps werelacking for LAI.Results achieved within the first part of the thesis show that the effective LAI is more accurately retrievedfrom satellite data than the actual LAI due to leaf clumping in the canopies. Further, the study has demonstratedthat multi-view observations provide only marginal improvements on LAI retrieval. The study also found that foroptimal retrievals the size of the uncertainty envelope over a set of possible solutions to be approximately equal tothat in the reflectance measurements. The results achieved in the second part of the thesis found the method withlocally adaptive temporal window, depending on amount of available observations and Climatology as backgroundestimation to be more robust to noise and missing data for smoothing, gap-filling and near real time estimationswith satellite time series.
|
8 |
Spectral Optical Layer Properties of Cirrus - Collocated Airborne Measurements and Radiative Transfer SimulationsFinger, Fanny 07 March 2018 (has links)
In der vorliegenden Arbeit werden optische Schichteigenschaften von Zirren durch räumlich und zeitlich kombinierte flugzeuggetragene Messungen zusammen mit Strahlungstransfersimulationen untersucht. Diese räumlich koordinierten Strahlungs– und Mikrophysikmessungen oberhalb, unterhalb und innerhalb des Zirrus werden mittels eines Forschungsflugzeuges (Learjet 35A) in Kombination mit einem Schleppkörper namens AIRTOSS (AIRcraft TOwed Sensor Shuttle) realisiert. AIRTOSS wird dabei vom Flugzeug aus mittels einer Winde abgelassen und wieder eingeholt. Die maximale Seillänge beträgt 4 km. Im Rahmen des AIRTOSS–ICE–Projekts (Inhomogeneous Cirrus Experiment) wurden während zweier Messkampagnen über der Nord– und Ostsee im Frühjahr und Spätsommer 2013 flugzeuggetragene Beobachtungen der Zirruseigenschaften durchgeführt. Beispielmessungen eines Messfluges werden in dieser Arbeit gezeigt, welche den Nutzen der simultanen Strahlungsmessungen mittels zweier Messplattformen
aufzeigen. Aus den Messungen der spektralen Flussdichten oberhalb und unterhalb des Zirrus werden die optischen Schichteigenschaften wie Transmissivität, Reflektivität und Absorptivität und die Albedo der Wolkenschicht ermittelt.
Die flugzeuggetragenen Untersuchungen werden durch Sensitivitätsstudien gestützt, basierend auf einem eindimensionalen Strahlungstransfermodell. Dies dient der Charaktierisierung des Einflusses variierender, optischer und mikrophysikalischer Zirruseigenschaften (Eiskristallform, Partikelgröße und optische Dicke) auf die optischen Schichteigenschaften und den solaren Strahlungsantrieb des Zirrus. Weitere Studien zeigen den Einfluss einer darunterliegenden Flüssigwasserwolke auf die Zirruseigenschaften. Eine niedrige Wolkenschicht führt zu Abweichungen der Schichteigenschaften des Zirrus von 85%. Die Nichtberücksichtigung niedriger Wolken unterhalb einer Zirrusschicht führt zu einer deutlichen Überschätzung des Strahlungsantriebs des Zirrus um Faktor 5. / In this thesis cirrus optical layer properties are investigated by truly collocated measurements and supplementary radiative transfer simulations. The close collocation of the radiative and microphysical measurements, above, beneath and inside the cirrus, is obtained by using a research aircraft (Learjet 35A) in tandem with a towed platform called AIRTOSS (AIRcraft TOwed Sensor Shuttle).
AIRTOSS can be released from and retracted back to the research aircraft by means of a cable up to a distance of 4 km. Data were collected in two field campaigns above the North and Baltic Sea in spring and late summer 2013 in the framework of the AIRTOSS–ICE (AIRTOSS – Inhomogeneous Cirrus Experiment) project. Exemplary, results from one measuring flight are discussed also to illustrate the benefits of collocated sampling. The spectral optical layer properties of cirrus are derived from simultaneous and vertically collocated measurements of spectral upward and downward solar irradiance above and below the cloud layer and concurrent in situ microphysical sampling of the ice particle size distributions.
From the irradiance data the optical layer properties (transmissivity, reflectivity,
and absorptivity) and the cloud top albedo of the observed cirrus layer are obtained.
These airborne observations are supported by sensitivity studies using one–dimensional radiative transfer modelling to characterize the effect of varying cirrus optical and microphysical properties (ice crystal shape, particle size, and cloud optical thickness) on the cirrus optical layer properties, as well as on the solar cirrus radiative forcing. Further studies show the impact of an underlying low–level liquid water cloud on the mentioned cirrus properties. A low–level cloud causes differences in the layer properties of the cirrus by 85%. If low–level clouds below cirrus are not considered the solar cooling due to the cirrus is significantly
overestimated by up to a factor of 5.
|
9 |
Improvement and use of radiative transfer models to assess lunar space weathering and mechanisms for swirl formationLiu, Dawei 15 June 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This dissertation focuses on quantification of submicroscopic iron of different sizes, mineral abundance and grain size of lunar soils using Hapke's radiative transfer model. The main objective is to explore implications of these results for assessing the relative importance of solar wind implantation versus micrometeorite impacts for lunar space weathering as well as three hypotheses (solar wind deflection, comet impact and dust transport) for swirl formation on the Moon. Results from this study can help to make connections between ordinary chondritic meteorites and asteroids, and put physical and chemical constraints on heating processes in the early solar system.
|
10 |
Light-Use Efficiency of Coral-Reef Communities: A Sensitivity Analysis Using an Optically Based Model of Reef Productivity and CalcificationPerez, Denise 01 August 2013 (has links)
Biogeochemical processes of reefs have been studied for over fifty years, however, information is still lacking on several fundamental reef processes. This lack of information has been limited essentially by techniques that cannot repeatedly sample large spatial areas. These limitations can be reduced with the use of an optical model to estimate biogeochemical processes. This project applied Monteith's light-use efficiency model to coral reef communities for determining photosynthetic and calcification efficiency of light. Gross primary production and net calcification were pooled from the peer-reviewed literature to calculate efficiency. Process efficiency was then compared across functional types of reef communities (i.e., coral, algae/seagrasses, mixed, and sand), and by year, location, season, and depth. Photosynthetic efficiency was calculated from 19 studies, showing an average of 0.039 mol O2 mol-1 photons. Photosynthetic efficiency differed significantly for mixed communities between studies, and for algae/seagrass communities among depths. Calcification efficiency averaged at 0.007 mol CaCO3 mol-1 photons. Significant differences were found in calcification efficiency of algae/seagrasses and mixed reef communities among studies and localities. Additionally, calcification efficiency of algae/seagrasses varied significantly in accordance with depth. Future use of the light-use efficiency model will require determining the efficiency of each functional type to estimate gross production and calcification. Additionally, further investigation of the light-use efficiency model will require long-term measurements of APAR, which is the fraction of incident light absorbed, and the incorporation of environmental parameters that reduce efficiency.
|
Page generated in 0.1149 seconds