Return to search

Paleomagnetism of Miocene volcanic rocks in the Mojave-Sonora desert region, Arizona and California.

Paleomagnetic directions have been obtained from 190 Middle Miocene (12-20 Ma) mafic volcanic flows in 16 mountain ranges in the Mojave-Sonora desert region of western Arizona and southeastern California. These flows generally postdate Early Miocene tectonic deformation accommodated by low-angle normal faults but predate high-angle normal faulting in the region. After detailed magnetic cleaning experiments, 179 flows yielded characteristic thermal remanent magnetism (TRM) directions. Because of the episodic nature of basaltic volcanism in this region, the 179 flows yield only 65 time-distinct virtual geomagnetic poles (VGPs). The angular dispersion of the VGPs is consistent with the angular dispersion expected for a data set that has adequately averaged geomagnetic secular variation. The paleomagnetic pole calculated from the 65 cooling unit VGPs is located at 85.5°N, 108.9°E within a 4.4° circle of 95% confidence. This pole is statistically indistinguishable (at 95% confidence) from reference poles calculated from similar-age rocks in stable North America and from a paleomagnetic pole calculated from similar-age rocks in Baja and southern California. From the coincidence of paleomagnetic poles from the Mojave-Sonora and adjacent areas, we can conclude that: (1) vertical-axis tectonic rotations have not accompanied high-angle normal faulting in this region; (2) there has been no latitudinal transport of the region since 12-20 Ma; and (3) long-term nondipole components of the Miocene geomagnetic field probably were no larger than those of the recent (0-5 Ma) geomagnetic field. In contrast, paleomagnetic data of other workers indicate vertical-axis rotations of similar-age rocks in the Transverse Ranges, the Eastern Transverse Ranges, and the Mojave Block. We speculate that a major discontinuity in the vicinity of the southeastward projection of the Death Valley Fault Zone separates western areas affected by vertical-axis rotations from eastern areas that have not experienced such rotations.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184554
Date January 1988
CreatorsCalderone, Gary Jude.
ContributorsButler, Robert F., Richardson, Randall M., Reynolds, Steve, Chase, Clement, Wallace, Terry
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds