• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 11
  • 11
  • 11
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stratigraphy of the Miocene Agate Beach formation in Lincoln County, Oregon

Herron, John Emanuel 13 May 1953 (has links)
Graduation date: 1953
2

Upper Miocene depositional history of the Central Gulf of Mexico basin

Wu, Xinxia 28 August 2008 (has links)
Not available / text
3

Depositional and structural evolution of the middle Miocene depositional episode, east-central Gulf of Mexico

Combellas Bigott, Ricardo Ignacio, 1974- 08 July 2011 (has links)
Not available / text
4

Pressuremeter testing in miocene stiff clays

Lien, Bon-Hsiang 10 October 2005 (has links)
In geotechnical engineering, it has proven difficult to obtain reliable soil parameters for stiff clays. Laboratory testing results are often scattering due to the fissures and slickensides in these soils. Alternatively, in situ techniques offer a means to test the soils in place. This study focuses on in situ testing in Miocene stiff clays using an advanced nine strain arm self-boring pressuremeter (SBPM). This device was used to test the soils in both a self-boring and a simpler, non-boring mode (pre-bored or PBPM tests). The Miocene stiff clay was unique in that was sensitive and lacked of fissures and slickensides. The pressuremeter results could be compared to a range of other tests previously performed at the site. It is concluded that the SBPM provides accurate values of modulus and strength. Minor soil disturbance was found to have little effect when it could be anticipated. The simpler PBPM tests were not successful because of disturbance caused by borehole preparation. / Ph. D.
5

Sedimentology and Stratigraphy of Miocene-Age Glacial Deposits, Friis Hills, Antarctica

Smith, Alexander Ryan January 2011 (has links)
The Friis Hills is an isolated plateau standing as much as 600 m above surrounding topography in the McMurdo Dry Valleys region or Antarctica.Preserved on the plateau surface is a sequence of early to middle Miocene-aged dritis. At the eastern edge of the plateau, these drifts fill a shallow paleovalley to a depth of at least 35 m. The drills are exposed in a natural cross-section where modern topography crosscuts the paleovalley. Establishing an age and an environmental interpretation for these deposits is important because Antarctic paleoclimate records are lacking from the Mid-Miocene Climate Optimum. Two drifts fill the ancient paleovalley in the eastern Friis Hills. The upper drift is here named Cavendish drift: the lower is here named Friis drift. Cavendish can be subdivided into three units, whereas Friis drift can be subdivided into two units. Each of these units is a horizontal bed that laps on paleovalley sidewalls. The lowest, Friis II, is a compact diamicton that is overlain by a nearly in-situ bedded volvanic ash. Based on [20]Ar/[39]Ar dating, the ash is 19.76 [plus/minus] 0.07 Ma old. A second diamicton, Friis I, conformably blankets Friis II and was discovered to hold fossileferous interbeds. Both Friis I and II contain erratic clasts and both are lodgemont tills deposited from small, locally derived, alpine glaciers. Bedrock striations show ice flow to the northeast at azimuths between 025? to 032?, parallel to the trend of the paleovalley axis. Above these, Cavendish I. II. and III were deposited when thick ice covered the Friis Hills. Where the Cavendish drift laps onto paleovalley sidewalls, bedrock striations show ice flow from 077? to 150?. Cavendish drift was deposited sometime alter 19.8 Ma but before 14 Ma. when the Dry Valleys glacial records show that regional glaciers became cold-based. Downcutting eventually isolated the Friis Hills plateau, resulting in the preservation of the drift sequence. This event was most likely associated with growth or the East Antarctic Ice Sheet 14 Ma ago. This age constraint means that the tills preserved in the Friis Hills date from a time just before the East Antarctic Ice Sheet expanded and became a permanent feature. Based on the age-dated stratigraphy presented in this thesis, future work focusing on fossiliferious interbeds could provide unique and important constraints on Miocene climate change. / North Dakota State University. Department of Geosciences
6

Influence of reservoir character and architecture on hydrocarbon distribution and production in the miocene of Starfak and Tiger Shoal fields, offshore Louisiana

Rassi, Claudia 10 June 2011 (has links)
Not available / text
7

Stratigraphy and depositional history of the Pantano Formation (Oligocene-early Miocene), Pima County, Arizona

Balcer, Richard Allen January 1984 (has links)
No description available.
8

Paleomagnetism of Miocene volcanic rocks in the Mojave-Sonora desert region, Arizona and California.

Calderone, Gary Jude. January 1988 (has links)
Paleomagnetic directions have been obtained from 190 Middle Miocene (12-20 Ma) mafic volcanic flows in 16 mountain ranges in the Mojave-Sonora desert region of western Arizona and southeastern California. These flows generally postdate Early Miocene tectonic deformation accommodated by low-angle normal faults but predate high-angle normal faulting in the region. After detailed magnetic cleaning experiments, 179 flows yielded characteristic thermal remanent magnetism (TRM) directions. Because of the episodic nature of basaltic volcanism in this region, the 179 flows yield only 65 time-distinct virtual geomagnetic poles (VGPs). The angular dispersion of the VGPs is consistent with the angular dispersion expected for a data set that has adequately averaged geomagnetic secular variation. The paleomagnetic pole calculated from the 65 cooling unit VGPs is located at 85.5°N, 108.9°E within a 4.4° circle of 95% confidence. This pole is statistically indistinguishable (at 95% confidence) from reference poles calculated from similar-age rocks in stable North America and from a paleomagnetic pole calculated from similar-age rocks in Baja and southern California. From the coincidence of paleomagnetic poles from the Mojave-Sonora and adjacent areas, we can conclude that: (1) vertical-axis tectonic rotations have not accompanied high-angle normal faulting in this region; (2) there has been no latitudinal transport of the region since 12-20 Ma; and (3) long-term nondipole components of the Miocene geomagnetic field probably were no larger than those of the recent (0-5 Ma) geomagnetic field. In contrast, paleomagnetic data of other workers indicate vertical-axis rotations of similar-age rocks in the Transverse Ranges, the Eastern Transverse Ranges, and the Mojave Block. We speculate that a major discontinuity in the vicinity of the southeastward projection of the Death Valley Fault Zone separates western areas affected by vertical-axis rotations from eastern areas that have not experienced such rotations.
9

The Cerro Guacha caldera complex : an upper Miocene-Pliocene polycyclic volcano-tectonic structure in the Altiplano Puna Volcanic Complex of the Central Andes of Bolivia

Iriarte, Rodrigo 22 May 2012 (has links)
Four multicyclic complex calderas and smaller ignimbrite shields located within the Altiplano Puna Volcanic Complex of the Central Andes (APVC) erupted 13000 km�� of magma within the last 11 Ma. One of the largest and most complex of these is the Cerro Guacha Caldera. Ar-Ar age determinations and paleomagnetic directions suggest that the Cerro Guacha Caldera was formed by two major eruptions, caldera collapse, resurgence cycles and several smaller eruptions. Two major ignimbrites (> 600 km��) are found with ������Ar-�����Ar from biotites and sanidines of 5.65 �� 0.01Ma for the 1300 km�� (magma volume) Guacha ignimbrite and 3.49 �� 0.01Ma for the 800 km�� Tara Ignimbrite. The last major eruption occurred on the western flank producing the 1.72 �� 0.02 Ma Puripica Chico Ignimbrite with a volume of approximately 10 km��. Characteristic remanent magnetization data (ChRM) for these ignimbrites show that the Guacha has reverse polarity, while the Tara is normally polarized and the magnetic fingerprints have allowed their current full extents to be identified. A conspicuous lineament of volcanic structures in the eastern part of the caldera, bordering a caldera moat, filled out welded ignimbrites and sedimentary lacustrine sequences suggest an earlier 60x40 km outer collapse associated with the Guacha explosive episode. A central graben formed on the Guacha welded ignimbrite is related to a first episode of resurgence. Evidence of a second 30 x15 km inner collapse includes offset of welded Guacha ignimbrites and alignment of lava domes associated with the Tara ignimbrite. A second resurgence episode is suggested by the presence of an uplifted central block consisting primarily of welded Tara ignimbrite. As a whole the three ignimbrites (Guacha, Tara and Puripica Chico) share the same petrological and geochemical characteristics: high-K series, compositional ranges from dacite to rhyolite, with andesitic members present as lavas (for the Guacha and Puripica Chico Ignimbrites) and as pumices (for the Tara Ignimbrite). Highest silica content is found in the Chajnantor dome. Rayleigh modeling for Ba, Rb and Sr suggests at least 60% of crystal fractionation to account for the compositional variation between the Guacha andesite and the Chajnantor dome. Dy/Hb ratio increases with time from the Guacha andesite to the Negreal andesite suggesting stabilization of garnet owing to crustal thickening. Fe-Ti exchange geothermometry for the Tara Ignimbrite yielded log fO��� values ranging from -13.06 to -13.38 and temperatures of 714�� to 801��C. Amphibole geobarometry yielded pressures ranging from 150 to 180 MPa equivalent to 5.3 and 6.4 km depth respectively for the Tara Ignimbrite; the pressures range between 133 to 242 MPa, equivalent to 5.0 to 9.2 km depth for the Guacha Ignimbrite. The zircon saturation method yielded saturation temperatures of 716�� and 705��C for the Guacha and Chajnantor dome respectively and 784��C for the Tara Ignimbrite. The zircon crystallization range for the magmas of the Cerro Guacha Caldera is 1.25 Ma for the Guacha Ignimbrite; 1.09 Ma for the Puripica Chico Ignimbrite and 0.95 Ma for the Tara Ignimbrite. Recycling of antecrystic zircons within the caldera magmas is continuos through time. / Graduation date: 2012
10

Biostratigraphy, taphonomy, and paleoecology of vertebrates from the Sucker Creek Formation (Miocene) of southeastern Oregon.

Downing, Kevin Francis. January 1992 (has links)
The Sucker Creek Formation exposures at Devils Gate in southeastern Oregon have yielded a significant small mammal fauna of at least thirty small mammal taxa from five stratigraphic horizons. The mammal-bearing portion of the Devils Gate section is more than 200 m thick. Fossil mammals occur in lacustrine and marginal lacustrine deposits lower in the section and occur in overbank and paleosol deposits higher in the section. ⁴⁰Ar/³⁹Ar single-crystal laser-fusion dates on three Devils Gate ashes shows that the age of the mammal-bearing sequence at Devils Gate spans the late early Barstovian land-mammal age with possible overlap into the late Barstovian, as currently defined. Duration of the entire mammal-bearing portion of the Devils Gate section was less than a million years. Both a new ash date from the type section and biostratigraphic correlations between Devils Gate and the type section support considerable temporal overlap between the two exposures. The Devils Gate Local Fauna includes several new taxa: a phyllostomatid bat; two "flying squirrels", Petauristodon sp. A and Petauristodon sp. B; and an eomyid rodent, Leptodontomys sp. A. Several fossil occurrences represent the first record of a taxon in the northern Great Basin and/or in the Barstovian land-mammal age, including: Blackia sp., Schaubeaumys grangeri, Protospermophilus quatalensis, and Pseudadjidaumo stirtoni. The Stagestop locality produced two new taxa, Copemys sp. aff C. esmeraldensis and Mystipterus sp. The Stagestop local fauna is Clarendonian in age. Concretions are an important source of fossil mammals in exposures of the Sucker Creek Formation. Geochemical analyses show that concretions formed through a complex interaction between bone and surrounding volcaniclastic material. Although some superficial bone was consumed during concretion diagenesis, concretion development reduced the chance of prolonged chemical and physical destruction of bone during later soil development. The broad ecological diversity of small mammals recovered from Devils Gate supports an interpretation of the local paleoecology as a mosaic of grassland, forest, and pond/lake-bank environments. Sequential small mammal faunas across a prominent ash event show a generally stable composition with no pronounced ecomorphic differences in pre- and post-volcanic disturbance intervals. Therefore, small mammals do not show analogous ecological patterns to disturbance-driven plant successions in the Sucker Creek Formation. I infer that the local ecosystem recovered from volcanic blasts at a temporal scale below the resolution of time-averaged, post-disturbance paleosols.

Page generated in 0.1124 seconds