• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 8
  • 8
  • 6
  • 2
  • 1
  • Tagged with
  • 51
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sedimentary processes and depositional environments in Caldera Lakes : Scafell (U.K.) and La Primavera (Mexico) Calderas

Raine, Pamela January 1998 (has links)
No description available.
2

Caracterización de las condiciones geodinámicas del área urbana y periurbana de la comuna de Caldera Desierto marginal de la Región de Atacama

Vidal Páez, Paulina Javiera January 2012 (has links)
Geógrafo / No autorizada para ser publicada en el Portal de Tesis Electrónicas de la U. de Chile.
3

Borde costero para Caldera: renovación y reactivación patrimonial del borde costero de Caldera

Salvo Abarca, Paula January 2017 (has links)
Memoria para optar al título de Arquitecto
4

Escuela de buzos y recorrido peatonal balneario en el muelle mecanizado de Caldera: intervención en infraestructura existente

Unda Surawski, Sofia January 2017 (has links)
Memoria para optar al título de Arquitecto
5

Planta desaladora de agua Caldera : integración industria ciudad

Rivera Martínez, Paz January 2012 (has links)
Arquitecto / Desde algún tiempo, se ha hecho presente en el ámbito científico una notoria preocupación por la inminente capacidad de nuestra especie de sobrepasar los límites naturales de sostenibilidad de nuestro planeta. En una época donde la humanidad crece de forma globalizada, ha surgido el entendimiento de que los recursos de nuestro planeta son limitados, y por ende, mientras mas rápido los consumamos, menos tiempo tendremos para desarrollar nuevas formas de distribuir dichos recursos. Surge a partir de esto una pregunta: ¿Cuánto tiempo tenemos para hacer sostenible nuestra presencia en la tierra antes de que esta se vuelva rotundamente insostenible? Para numerosos especialistas y estudiosos de las relaciones entre nuestra especie y el planeta, no nos queda mucho tiempo, y al parecer tenemos una agenda bastante ajustada. Este siglo XXI puede resultar decisivo para encaminar nuestro desarrollo en vías de hacer progresar nuestra civilización más allá, sin comprometer los mecanismos básicos del medio natural que la mantienen en pie. Ahora bien, en el último tiempo la sociedad en su conjunto se ha hecho consciente de la degradación ambiental que vive el planeta, y esta buscando resolver dichas problemáticas por medio de diversas vías de cuidado y reparación del medio, sin impedir el desarrollo económico y social de la humanidad. En el año 1987 se elaboro el informe “Nuestro Futuro Común” encabezado por la doctora Brundtland (1), en el marco de la Comisión Mundial sobre el Medio Ambiente y Desarrollo de Naciones Unidas, que populariza el concepto de desarrollo sostenible, desde entonces la ONU ha puesto sus esfuerzos en abordar el tema de la degradación ambiental, invitando a participar a las naciones en las llamadas Cumbres de la Tierra, donde se establecen principios y planes de acción conducentes a abordar la protección del medio Ambiente. Sin embargo el Agotamiento de los Recursos Naturales que vive el planeta va en aumento, siendo la desertificación y la crisis mundial del agua una de las problemáticas ambientales mas graves. En el 2050 la escasez de agua afectará a 7.000 millones de personas, Naciones Unidas advierte de la gran crisis del siglo XXI, agravada por el cambio climático. (2) El Agua es el más importante de todos los recursos naturales y uno de los principales constituyentes del mundo en que vivimos y de la materia viva. Sin embargo, este recurso ha sido sobreexplotado y contaminado a lo largo de la historia, y hoy en pleno siglo XXI esta en crisis. Actualmente, Chile se ve afectado por distintos procesos de degradación ambiental, siendo las de mayor preocupación; la Desertificación de los suelos, la degradación de cuencas hidrográficas y la inminente escasez de agua que se da en las Zonas Áridas y Semiáridas del norte y centro de nuestro territorio, producto de las actividades mineras y agrícolas a gran escala. Esto hace necesario buscar nuevas tecnologías que permitan explotar el recurso natural del agua de forma sostenible y frenar estos procesos de deterioro ambiental.
6

フィリピン共和国,ルソン島の火山活動に関する熱ルミネッセンス法と放射性炭素法による年代学的研究(第19回名古屋大学年代測定総合研究センターシンポジウム平成18(2006)年度報告,第2部)

奥野, 充, Okuno, Mitsuru, Mirabueno, Ma. Hanah T., 中村, 俊夫, Nakamura, Toshio, 高島, 勲, Takashima, Isao, Cantane, Sandra G., Listanco, Eddie L., Arpa, Ma. Carmencita B., Bornas, M. Antonia, Moriyasu, Makoto, Maximo, Raymond Patrick R., Laguerta, Eduardo P., Reyes, Perla J. Delos, 守安, 誠, 鎌田, 浩毅, Kamata, Hiroki, 和田, 恵治, Wada, Keiji, 長岡, 信治, Nagaoka, Shinji, 守屋, 以智雄, Moriya, Ichio, Solidum, Renato, Newhall, Christopher G., 小林, 哲夫, Kobayashi, Tetsuo 03 1900 (has links)
第19回名古屋大学年代測定総合研究センターシンポジウム平成18(2006)年度報告<第2部> Proceedings of the 19th symposiumon on Chronological Studies at the Nagoya University Center for Chronological Research in 2006 日時:平成19 (2007)年1月15日(月)~17日(水) 会場:名古屋大学シンポジオン Date:January15th-17th, 2007 Venue:Nagoya Uhiversity Symposion Hall
7

Volcanic evolution of the Otowi Member of the Bandelier Tuff, Jemez mountains, New Mexico

Cook, Geoffrey William. January 2009 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, December 2009. / Title from PDF title page (viewed on Dec. 15, 2009). "School of Earth and Environmental Sciences." Includes bibliographical references (p. 232-247).
8

Geochemical and thermal insights into caldera-forming "super-eruptions"

Lake, Ethan Taliaferro 15 July 2013 (has links)
Explosive, caldera forming "super-eruptions" (an eruption of VEI 8 or larger, resulting in 1000+ km³ of volcanic ejecta in ignimbrite sheets) are the single most destructive natural disaster native to Earth. Super-eruptions require three elements to occur: 1-crustal magmatic fluxes above background solidification rates, 2-growth of a batholith scale magma chamber, and 3-an eruption trigger. This study addresses these requirements with new petrographic and geochemical analyses and numerical simulations of crustal magma bodies. Crustal magmatic fluxes up to 10x steady-state arc rates are required to form volcanic provinces that host super-eruptions. Super-eruptions can occur in continental hot-spots or rift environments. Why arcs "flare-up" is the subject of active debate. Arcs may follow a regular cycle of lithospheric thickening, delamination, and asthenospheric upwelling (the Andean cycle); alternatively fertilized lithospheric mantle may undergo rapid melting. Targeted sampling (n = 165) of mapped but unsampled mafic and lamprophyric magmas in the San Juan magmatic locus of Colorado, an archetypical ignimbrite province, over three years identified both the lithospheric mantle reservoir and the most primitive San Juan magmas using optical petrography, whole rock geochemistry (n = 50) and Pb, Sr, and Nd isotope geochemistry (n = 32). These mafic magmas more closely resemble the continental lithosphere geochemically. Mixing models based on Energy Constrained Assimilation/Fractional-Crystallization (EC-AFC) indicate that the San Juan magmatism is the product of lithospheric melts and 30-40% crustal assimilation rather than asthenospheric upwelling. The Farallon flat-slab "pre-fluxed" and refrigerated the Colorado lithospheric mantle; removal of that slab at around 40 Ma triggered the SJVF "flare-up." Numerical simulations of crustal magma chamber growth indicate giant magma chambers form when high magma fluxes raise upper crustal temperatures to 300-400 °C at 5-10 km depth. These simulations focus on chamber growth, convection, and cooling at the expense of geometry or chamber mechanical failure with realistic sill-like geometry at the expense of thermal modeling. New 3D finite difference simulations emphasize the importance of geometry on chamber lifespan and crustal heating. A spherical chamber (i.e. model construct) requires 10x the cooling time of a 2km caldera footprint sill of same volume. Increasing sill thickness by 1km can double chamber longevity. Focused intrusions (i.e. 1D modeling) locally produce higher thermal gradients and preserve larger primary basalt volumes. Random intrusions in 3D yield basalt to crust ratios of 3-4:1 (required in the EC-AFC models). Random intrusion in 3D into the upper crust at "flare-up" fluxes ([greater than or equal to]10 km³ per k.y.) elevate average crustal geotherms by 10 °C / km, allowing for growth of batholithic scale magma chambers a wider footprint. Once situated in the upper crust, sub-caldera magma chambers cool inward forming moving crystallization and fluid saturation fronts. If the saturation front propagates faster than the crystallization front, nucleating fluid bubbles have the opportunity to grow, ascend, and collect at the chamber roof. New 2D finite difference models couple magma chamber cooling to fluid production to explore the conditions of fluid escape and collection. Less silicic magma composition, equant geometry, high ambient thermal gradient, and a stock all aid in fluid pocket growth by slowing the advance of the crystallization front (a fluid trap) and triggering saturation at lower fluid concentrations. Fluid pockets that grow to certain sizes ( > 500 m hemispherical bubble) have the potential to trigger an eruption by propagation of a fluid fracture to the surface. This mechanism possibly triggered the eruption of the 5000+ km³ Fish Canyon Tuff as well as smaller, recent eruptions (Pinatubo, El Chichón). Caldera forming super-eruptions occur in regions that meet these three requirements: 1-high magmatic flux, 2-rapid growth to batholithic size, and 3-a delayed eruption trigger. For the SJVF of Colorado melting of the "pre-fluxed" lithosphere provided the magmatic pulse which melted and heated the crust, forming a broad batholith. As magmatism peaked and began to wane, upper crustal magma chambers started to crystallize, exsolving fluids. These fluids ascended, collected, and fractured their way to the surface, triggering the Fish Canyon Tuff and other eruptions. / text
9

Formation and Evolution of Paterae on Jupiter's Moon Io

Radebaugh, Jani January 2005 (has links)
Paterae (volcano-tectonic depressions) are among the most prominent topographic features on Io. They are unique, yet in some aspects they resemble calderas known and studied on Earth, Mars, and Venus. They have steep walls, flat floors, and arcuate margins, typical of terrestrial and Martian basalt shield calderas. However, they are much larger (2 km - 202 km diameter, mean 42 km 3 km) and typically lack obvious shields. They are often angular in shape or are found adjacent to mountains, suggesting tectonic influences on their formation. A preferential clustering of paterae at the equatorial sub- and anti-jovian regions is likely a surface expression of tidal massaging and convection in the asthenosphere. Paterae adjacent to mountains have a mean diameter 14 km 9 km larger than that for all paterae, which may indicate paterae grow larger in the fractured crust near mountains. Nightside and eclipse observations of Pele Patera by the Cassini and Galileo spacecraft reveal that much of Pele’s visible thermal emission comes from lava fountains within a topographically confined lava body, most likely a lava lake. Multiple filter images provided color temperatures of 1500 80 K from Cassini ISS data, and 1420 100 K from Galileo SSI data. Hotspots found within paterae (79% of all hotspots) exhibit a wide range of thermal behaviors in global eclipse images. Some hotspots are similar to Pele, consistently bright and confined; others, such as Loki, brighten or dim between observations and move to different locations within their patera. A model for patera formation begins with heating and convection within a high-temperature, low-viscosity asthenosphere. Magma rises through the cold, dense lithosphere either as diapirs [for thermal softening of the lithosphere and sufficiently large diapirs (20 km - 40 km diameter, >5 km thickness)] or through dikes. Magma reaches zones of neutral buoyancy and forms magma chambers that feed eruptions. Collapse over high-level chambers results in patera formation, filling of the patera with lava to create a lava lake, or lateral spreading of the magma chamber and subsequent enlargement of the patera by consuming crustal materials.
10

Geology of the Monowai Rift Zone and Louisville Segment of the Tonga-Kermadec Arc: Regional Controls on Arc Magmatism and Hydrothermal Activity

Gray, Alexandra 27 April 2022 (has links)
The Tonga-Kermadec arc in the SW Pacific comprises a chain of more than 90 volcanic complexes. A continuous 400-km long chain of volcanic activity along the central portion of the Tonga arc has become the focus of intensive research, extending previous studies that have focused on the southern Kermadec chain. Earlier interpretations of the Tonga arc have focused on a perceived lack of volcanism between ~21°S and ~27°S, adjacent to a bend in the trench caused by the collision of the subducting Louisville Seamount Chain (LSC). During swath mapping in 2002, it was revealed that this portion of the arc, including the Louisville and Monowai segments, is in fact one of the most volcanically active parts of the Tonga-Kermadec system. At this location, a combination of oblique convergence of the Pacific Plate and southward compression due to the collision of the LSC has resulted in left-lateral strike-slip faulting and rifting of the arc crust. This has produced a series of left-stepping arc transverse graben and horst structures that localize the voluminous volcanic activity. For this study, a new 1:250,000 scale geological map of the Louisville and Monowai segments has been constructed as a framework for a quantitative analysis of arc volcanism and the eruptive history of these segments. Two types of volcanoes dominate the arc front: deep caldera systems (collapse structures formed due to the evacuation of magma) within the arc rifts, and smaller volcanic cones between the rifts. The cone volcanoes tend to have small summit craters (<10 km3) whereas the large caldera volcanoes have major depressions of up to 50 km3. The cones are relatively undeformed, whereas the larger calderas are affected by multiple stages of collapse, asymmetric subsidence, and distortion caused by regional stresses. Surveys of the crater walls of the cone volcanoes show a predominance of volcaniclastic deposits, whereas the caldera volcanoes contain a high proportion of coherent lava flows. The caldera volcanoes also show a prevalence of basaltic melts compared to the more andesitic and dacitic cones. The largest caldera volcano is the Monowai volcanic complex (25°53’S) occupying a deep depression (Monowai Rift Graben) that crosses the arc front. The volcanic complex consists of a large caldera (12 km wide, 1600 m deep) and an adjacent stratovolcano (Monowai Cone) rising nearly to sea level. We suggest that the different types of volcanoes along the Louisville and Monowai segments reflect the influence of deep structures within the arc crust that have localized strikeslip and normal faulting.

Page generated in 0.0717 seconds