• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 8
  • 8
  • 6
  • 2
  • 1
  • Tagged with
  • 51
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Magma Mixing and Dome Formation: Dacite of East Pass Creek, Colorado

Streffon, Jenna C. 09 August 2019 (has links)
No description available.
22

Evolution of Plinian magmas from Popocatépetl Volcano, México

Sosa Ceballos, Giovanni 1975- 24 October 2014 (has links)
Fractional crystallization, magma mixing, assimilation of continental crust, and how those processes modify volatile budgets, control the evolution of magma. As a consequence, the understanding of these processes, their magnitudes, and timescales is critical for interpreting ancient magma systems, their eruptions, and the potential future volcanic activity. In this dissertation I present the results of three projects. The first explores how magmatic processes affect magma reservoirs and eruption dynamics. The second explores where in the storage system and how often these processes occur. The third explores how volatile budgets are modified by processes such as crystallization, mixing, and assimilation. Volcán Popocatépetl (central México) erupted ~14100 14C yr BP producing the Tutti Frutti Plinian Eruption (TFPE). The eruption tapped two different silicic magmas that mixed just prior and during the eruption. The influx of mass and volatiles generated during the mixing of both magmas overpressured the reservoir, which was weakened at the top. The weakened reservoir relaxed while magma was tapped and collapsed to form a caldera at the surface. Although it is known that fractional crystallization, mixing, and assimilation can greatly modify magmas, the frequency and intensity of these events is not known. I investigated the magmatic processes responsible for the evolution of magmas erupted during five Plinian events of Popocatépetl volcano. Results show that during the last 23 ky magma was stored in two different zones, and was variably modified by replenishments of mafic magma. Interestingly, little evidence for large mafic inputs triggering explosive eruptions was found. Each of these processes alters the abundances of volatiles and introduces different types of volatiles to the system. Hence, the volatile budget of magma can have a rich and complex history. To investigate how volatile budgets evolve in active magma systems, I analyzed the abundances of volatiles (H2O, CO2, F, Cl, and S) in numerous glass inclusions trapped in phenocrysts. Results show that the magmas that produced the last five Plinian eruptions at Popocatépetl volcano evolved by crystallization and magma mixing, assimilation of the local carbonate basement is not chemically appreciable. Mixing with mafic magmas added substantial CO2 and S to the system, dewatered the magma, yet produced little change in the F contents of the magmas. / text
23

Magnetická stavba, tok magmatu a tektonická deformace ve vulkano-plutonických systémech / Magnetic fabric, magma flow and tectonic deformation in volcano-plutonic systems

Tomek, Filip January 2015 (has links)
Magnetic fabric, magma flow and tectonic deformation in volcano-plutonic systems ABSTRACT This Ph.D. thesis aims to investigate dynamics of emplacement and tectonic history of selected volcano-plutonic complexes in a continental magmatic arc and back arc setting. The thesis presents new data sets from five field areas, presented in separate chapters, which could be viewed as representing a vertical sections through upper part of an intermediate to felsic magmatic system. From top to bottom in this ‛imaginary' vertical system, the examined units are: (1) andesitic lava domes and (2) sub-volcanic magma chambers (<3 km deep) of the Miocene Štiavnica volcano- plutonic complex, Western Carpathians (Slovakia), (3) Shellenbarger pluton (<3 km depth) within the mid-Cretaceous Minarets caldera, Sierra Nevada batholith in California (USA), and ~7-10 km deep granitoids of (4) Lower-Cretaceous Wallowa batholith, Blue Mountains province in Oregon (USA) and (5) Late Devonian Staré Sedlo complex, central Bohemian Massif (Czech Republic). The research incorporates extensive field and structural data, supported by analysis of igneous textures and anisotropy of magnetic susceptibility (AMS). The latter is further accompanied by detailed examination of magnetic mineralogy using thermomagnetic measurements and optical and back...
24

The 2014-15 Bárðarbunga-Holuhraun magmatic rifting episode : a seismic study

Agustsdottir, Thorbjorg January 2018 (has links)
On 16 August 2014 an unusual sequence of earthquakes began near the southeastern rim of the ice-covered Bárðarbunga caldera in central Iceland. Over the course of two weeks a dyke propagated 48 km beneath the glacier northeastwards and into the Holuhraun lava field, where it erupted for six months, becoming the largest eruption in Iceland for over 200 years. During this time, a gradual, incremental caldera collapse took place in the central volcano. The rifting episode was captured both geodetically and seismically. In this thesis, I analyse the seismic response to the event, both due to the dyke propagation, and the subsequent caldera collapse. This gives an insight into the underlying processes controlling rifting events, and the nature of the responding crust. The Cambridge seismic network recorded the 2014-15 Bárðarbunga-Holuhraun rifting episode in exceptional detail. I discuss the deployment and operation of this dense seismic network in the remote Icelandic highlands, as well as the campaign deployments on the volcano caldera, on the glacier (above the dyke path) and around the eventual eruption site, as a first response to the crisis. Using this dataset I have accurately located, and analysed, 47,000 earthquakes during the pre-intrusive, intrusive, eruptive and post-eruptive periods. Approximately 4,000 of the recorded earthquakes are associated with the caldera collapse, delineating faults accommodating the subsidence and showing good correlation with geodetic data. The seismicity reveals activation of both inner and outer caldera faults with 60 inward dipping planes on the northern and southern side, indicating a symmetric caldera structure. Detailed analysis of the earthquake source mechanisms shows that 90% can be explained by a double-couple solution, which is in contrast to results from previous studies of Bárðarbunga. I find the dominant failure mechanism during the collapse to be steep normal faulting, with sub-vertical P-axes, striking sub-parallel to the caldera rim. The northern and southern sides of the caldera, however experienced very different seismicity rates, highlighted by the order of magnitude difference in the cumulative seismic moments. The southeastern part of the caldera, whilst experiencing less activity, shows a mixture of failure mechanisms, owing to the interaction of the caldera collapse and the dyke exit. Therefore, this thesis presents evidence of a complex asymmetric caldera collapse, not controlled by a single caldera ring fault. Of the 47,000 earthquakes located, 31,000 delineate the segmented, lateral dyke intrusion as it fractured a pathway through the crust, utilizing pre-existing weaknesses. Despite the extensional rift setting, the dyke emplacement generated exclusively doublecouple earthquakes. At the leading edge of the propagation, earthquake source mechanisms show exclusively strike-slip faulting, in contrast to the conventional model of normal faulting above a propagating dyke. I observe right-lateral strike-slip faulting as the dyke propagates to the NE, and an abrupt change to left-lateral strike-slip faulting as the dyke turns and propagates in a more northerly direction into the northern volcanic zone. This shows that the direction of fault motion is determined by the opening of the dyke, rather than by the regional extension. I am also able to define the thickness of the seismogenic crust under Bárðarbunga as 7 km, based on the depth extent of observed seismicity. The bulk of the seismicity in the volcano is located at 1-4 km below the surface, whereas the dyke exited the caldera at 4-6 km depth, propagating at 6-8 km b.s.l. I hypothesise that the magma storage region is likely located at 4-6 km b.s.l. (6-8 km below the caldera surface), just below the most active caldera seismicity and at similar depth levels to the dyke. Thus, this thesis details the melt distribution and movement at depth from a large basaltic central volcano, and the coupled deformation of the subsiding caldera with the dyke intrusion and eruption.
25

Investigations of volcanic and earthquake-related deformation: observations and models from Long Valley Caldera, Northwestern Peloponnese, and Northwestern Costa Rica

Feng, Lujia 08 July 2011 (has links)
The advent of Global Positioning System (GPS) has revolutionized geodesy with high accuracy, fast speed, simple use, and low cost. This dissertation investigates three topics on volcano and earthquake-related deformation using GPS measurements and models to demonstrate the power of the new generation of geodetic methods. The three topics include the 2002-2003 continued episodic inflation at Long Valley Caldera in eastern California, the coseismic and postseismic response of the energetic 2008 MW 6.4 Achaia-Elia Earthquake in northwest Peloponnese, Greece, and the interseismic megathrust coupling and forearc sliver transport near the Nicoya Peninsula in northwest Costa Rica.
26

Thicknesses and Density-Current Velocities of a Low-Aspect Ratio Ignimbrite at the Pululagua Volcanic Complex, Ecuador, Derived from Ground Penetrating Radar

Petriello, John A., Jr. 08 June 2007 (has links)
The thinning trend of a low-aspect ratio ignimbrite (LARI) in a direction of increasing topographic relief at the Pululagua Volcanic Complex, Ecuador, is established by correlating continuous ground penetrating radar (GPR) profiles and radar reflector behavior with stratigraphic measurements and unit behavior. Minimum density-current and vertical (cross-sectional) velocity analyses of the LARIs parent pyroclastic density-current are performed by analyzing the exchange of kinetic energy for potential energy in an upslope direction. Continuous GPR profiles were acquired in a direction of increasing topographic relief with the intent of identifying the LARI within the GPR record and examining the relationships between the LARI and the underlying paleo-topographical surface. Stratigraphic measurements recorded throughout the field area demonstrate that the LARI thins 7.5 m in an upslope direction (over 480 m distance and 95 m elevation). Stratigraphic measurements enable correlations with GPR profiles, resulting in LARI identification. By utilizing GPR derived paleo-topographical surface elevations, minimum flow velocities of the LARI-producing parent pyroclastic density-current at the base of upslope flow are shown to be at least 25 m/s. Vertical velocity analyses based on the identification of internal GPR reflectors, interpreted as flow streamlines, yield pyroclastic surge-like cross-sectional velocity profiles of the LARIs parent density-current. Maximum density-current velocities at the base of upslope flow reach 24 m/s and diminish toward the base of the current.
27

Geophysical Investigations and Groundwater Modeling of the Hydrologic Conditions at Masaya Caldera, Nicaragua

MacNeil, Richard Eric 17 July 2006 (has links)
Masaya volcano, Nicaragua, has been the site of tremendous Plinian basaltic eruptions. Two eruptions ~6,500 and 2,250 BP formed the 6 kilometer (km) x 11 km, northwest trending Masaya caldera. The present day active Santiago Crater within the caldera is the site of persistent volcano degassing and occasional phreatic explosions. While the mechanism responsible for these phreatic explosions is unclear, one possible explanation is the interaction of groundwater with the shallow magma chamber beneath Masaya. This interaction with meteoric water is supported by the substantial steam discharge from the vent, which is significantly larger than other similar volcanoes in the world. To better understand these interactions, the distribution of groundwater was characterized for the volcano based on interpretation of 29 Transient Electromagnetic (TEM) soundings. The TEM data were modeled using two independent methods to estimate resistivity as a function of depth. Results from modeling the TEM data indicate an overlying highly resistive layer throughout the caldera that is underlain by one or more conductive layers. The implied water table of the caldera is expressed as a subdued replica of the topography in the higher vent regions in the central and southern portions of the caldera and decreases to a level that coincides with the elevation Lake Masaya in the lower sections of the caldera. The water table elevation in the caldera also shows a marked difference from the regional groundwater flow system as there is a large gradient in head values suggesting a sharp change in transmissivity along the caldera boundaries, which indicate the caldera is hydraulically isolated from the surrounding region. In order to better understand the hydrologic processes at Masaya caldera, a 3-D finite difference groundwater model was created using the 29 estimated water levels and two groundwater flux measurements to simulate the hydrologic system The model calibration revealed that a deep, highly permeable layer must feed the active vent in order for the steam emissions to be maintained at their current levels. This information about the caldera provides a baseline for forecasting the response of this isolated groundwater system to future changes in magmatic activity.
28

Timber Mountain Caldera Landscape Photograph Collection

Stoffle, Richard W., Van Vlack, Kathleen A. 10 October 2013 (has links)
These photographs offer illustrations of the people, places, and resources along the two prominent pilgrimage trails in the Timber Mountain Caldera region. These photographs were taken during the 2006 Timber Mountain Caldera Landscape Study, the 2001 Shoshone Mountain Wind Farm Environmental Assessment, and 1999 NTS Rock Art study.
29

Large-Volume Rhyolite Genesis in Caldera Complexes of the Snake River Plain

Watts, Kathryn Erin, 1983- 06 1900 (has links)
xix, 189 p. : ill. (some col.), maps (some col.) / Caldera-forming eruptions are dramatic and destructive natural phenomena, causing severe and sustained consequences to society. This dissertation presents new geochemical and geochronologic data for caldera-forming tuffs and pre- and post-caldera rhyolites of the two youngest caldera complexes in the Snake River Plain (SRP) in the western USA: Heise (6.6-4.5 Ma) and Yellowstone (2.1-0.6 Ma). Caldera complex evolution at Heise and Yellowstone can be described by formation of 3-4 spatially overlapping "nested" calderas, successive collapse of intracaldera fill, and development of a large hydrothermal system. Comparison between Heise and Yellowstone reveals that late-stage rhyolite eruptions have drastic depletions in 18 O that require remelting of large volumes (1,000's of km 3 ) of hydrothermally altered rock. Archean xenoliths and Phanerozoic rocks of the crustal basement beneath the SRP province are not depleted in 18 O and therefore cannot be a source of these rhyolites. Isotopic mixing models indicate that early large-volume rhyolites are produced by melting and hybridization of the crust by mantle-derived basalt, and late-stage rhyolites tap hydrothermally altered portions of intracaldera rocks from previous eruptions. Caldera-forming eruptions at Heise culminated 4.45 Ma with eruption of the 1,800 km 3 Kilgore Tuff, the most voluminous 18 O-depleted rhyolite in the SRP and worldwide. O, Sr, and Nd isotope geochemistry, zircon ages, mineral and whole-rock geochemistry, and liquidus temperatures for Kilgore Tuff samples erupted >100 km apart are similar and/or overlapping within error, indicating derivation from a remarkably homogeneous low-δ 18 O magma reservoir (δ 18 O=3.4[per thousand]). Caldera-wide batch assembly and homogenization of variably 18 O-depleted melt pockets with diverse zircon populations can explain the Kilgore Tuff's genesis. Central Plateau Member (CPM) rhyolites at Yellowstone have the same timing (∼2 million years after the initiation of volcanism), magnitude of δ 18 O depletion (∼3[per thousand] depleted relative to normal rhyolites), and cumulative eruptive volume (∼4,000-4,500 km 3 ) as the Kilgore Tuff of the Heise volcanic field. Isotopic, age, and geochemical data for CPM rhyolites show that they become progressively more homogeneous and evolved from 260 ka to 75 ka. Whereas the Kilgore Tuff erupted climactically as an explosive caldera-forming tuff, CPM rhyolite eruptions record sequential, predominantly effusive, "snapshots" of magma assembly, homogenization, and differentiation. This dissertation includes co-authored materials both previously published and submitted for publication. / Committee in charge: Ilya Bindeman, Chairperson; Gregory Retallack, Member; Mark Reed, Member; W. Andrew Marcus, Outside Member
30

Variaciones Locales del Nível del Mar en las Cuencas Neógenas de Caldera, III Región y Arauco, VIII Región: Deducción de Tasas de Alzamiento y Subsidencia Tectónica

Henríquez Salazar, Alvaro Andrés January 2006 (has links)
No description available.

Page generated in 0.056 seconds