• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Field and experimental studies of pyroclastic density currents and their associated deposits

Ritchie, Lucy Jane January 2001 (has links)
The transport and emplacement mechanisms of the highly energetic pyroclastic density current (PDC) generated in the blast style eruption of Soufriere Hills Volcano, Montserrat, on 26 December 1997 are examined through detailed lithological mapping and sedimentological analysis of the deposits. The PDC formed deposits which range in grain size from coarse breccias to fine ash, with distinctive bipartite layering and well-developed grading and stratification. On a large scale the PDC was highly erosive, sculpting large bedforms and depositing relatively thin deposits. However, locally, centimetre scale topographic protuberances were responsible for significant variations in deposit thickness, grain size, and the development of dune bedforms. The strong lateral and vertical lithofacies variations are attributed to well-developed density stratification, which formed during explosive expansion of the dome prior to PDC formation. Experimental modelling of stratified inertial gravity currents was carried out to investigate the effects of density stratification prior to release of the current. The degree of stratification governs the rate of mixing in the current, which in turn influences the velocity. Well·stratified currents initially move faster than homogenous currents but are slower in the latter stages of current propagation. The results have important implications for deposition from particle-laden flows, which may become stratified with coarser material concentrated at the base of the current. The role of PDCs jn the formation of unit US2-B, emplaced during the Upper Scoriae 2 eruption (79± 8 ka) on Santorini, Greece, was investigated through sedimentological analysis and mapping. Proximally, the unit exhibits features characteristic of emplacement from a flow, such as thickening into palaeochannels and erosive basal contacts. Distally, the unit is of uniform thickness and grain size parameters suggest the deposit is more characteristic of exnplacement from a fallout mechanism. Discrete lenses of fine-grained material within US2-B, and a gradational upper contact with PDC deposits suggest that there may have been contemporaneous deposition resulting the development of a hybrid deposit.
2

Thicknesses and Density-Current Velocities of a Low-Aspect Ratio Ignimbrite at the Pululagua Volcanic Complex, Ecuador, Derived from Ground Penetrating Radar

Petriello, John A., Jr. 08 June 2007 (has links)
The thinning trend of a low-aspect ratio ignimbrite (LARI) in a direction of increasing topographic relief at the Pululagua Volcanic Complex, Ecuador, is established by correlating continuous ground penetrating radar (GPR) profiles and radar reflector behavior with stratigraphic measurements and unit behavior. Minimum density-current and vertical (cross-sectional) velocity analyses of the LARIs parent pyroclastic density-current are performed by analyzing the exchange of kinetic energy for potential energy in an upslope direction. Continuous GPR profiles were acquired in a direction of increasing topographic relief with the intent of identifying the LARI within the GPR record and examining the relationships between the LARI and the underlying paleo-topographical surface. Stratigraphic measurements recorded throughout the field area demonstrate that the LARI thins 7.5 m in an upslope direction (over 480 m distance and 95 m elevation). Stratigraphic measurements enable correlations with GPR profiles, resulting in LARI identification. By utilizing GPR derived paleo-topographical surface elevations, minimum flow velocities of the LARI-producing parent pyroclastic density-current at the base of upslope flow are shown to be at least 25 m/s. Vertical velocity analyses based on the identification of internal GPR reflectors, interpreted as flow streamlines, yield pyroclastic surge-like cross-sectional velocity profiles of the LARIs parent density-current. Maximum density-current velocities at the base of upslope flow reach 24 m/s and diminish toward the base of the current.
3

The volcaniclastic deposits of the main caldera and the evolution of the Galluccio Tuff of Roccamonfina volcano, Southern Italy

Cole, Paul David January 1990 (has links)
The south-west portion of the main caldera was mapped and a stratigraphy for the caldera-fill was constructed. The exact timing of formation of the main caldera is unclear; However, caldera collapse either predates or was synchronous with the eruption of the Campagnola Tuff. The proximal facies of the Campagnola Tuff exists as a complex relation of ignimbrite, lithic breccia and pyroclastic surge deposits. Overlying this the Galluccio Tuff a compound ignimbrite, ~6 km3 D.R.E, forms the base of the exposed caldera fill. Caldera lakes then became well established and following activity was predominantly phreatomagmatic. Pyroclastic surge deposits possess sand wave structures of several types and their migration direction was apparently controlled by the velocity/flow regime of the surge rather than the moisutre content. The morphology of juvenile clasts from phreatomagmatic deposits indicates that the eruptions were driven by a combination of vesiculation and magma/water interaction. The uppermost pyroclastic deposits are thought to represent the early phase of dome building where water still had access to the vent. The construction of the lava domes brought activity to a close within the main caldera. The Galluccio Tuff on the flanks of the volcano may be divided into three compositionally distinct eruptive units. The Lower Galluccio Tuff, correlated with the bulk of the Galluccio Tuff filling the main caldera. The Middle Galluccio Tuff commenced with the eruption of pumice-rich pyroclastic flows followed by flows enriched in both the size and amount of lithic fragments forming lithic-rich ignimbrite and co-ignimbrite lithic breccias of which several types exist. The Upper Galluccio Tuff is composed of lithic-rich ignimbrite which possess dense pumice fragments and are thought to be the product of a combination of both vesiculation and magma water interaction. Field relations indicate that pyroclastic flows were sometimes generated in quick succession and may have overrun earlier slower moving flows. Occasionally internal shear may have caused the overriding of portions of the same flow, these often coincide with lithic breccias and represent the climax of the eruptive phases. The grading of lithic fragments indicates that the expansion and fluidization decreased and yield strength increased with time in a pyroclastic flow.

Page generated in 0.3582 seconds