abstract: The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid.
Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies.
The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid.
To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively.
To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient features. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
Identifer | oai:union.ndltd.org:asu.edu/item:46197 |
Date | January 2017 |
Contributors | Yu, Jicheng (Author), Karady, George (Advisor), Qin, Jiangchao (Advisor), Karady, George (Committee member), Qin, Jiangchao (Committee member), Ayyanar, Raja (Committee member), Holbert, Keith (Committee member), Lei, Qin (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 142 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0013 seconds