• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 11
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um novo algoritmo de proteção para redes HVDC multiterminais / A novel protection algorithm for multiterminal HVDC grids

Rui Bertho Junior 24 August 2017 (has links)
Recentes avanços em relação aos dispositivos semicondutores utilizados no processo de conversão CA/CC levaram à aplicação de conversores fonte de tensão, do inglês Voltage Source Converter (VSC), na transmissão de energia elétrica em altas tensões e corrente contínua, do inglês High Voltage Direct Current (HVDC). Uma das vantagens da utilização de VSCs é simplificr o processo de criação de redes HVDC com múltiplos terminais, identificadas pela sigla em inglês Multi-terminal HVDC (MTDC). Entretanto, a severidade das faltas em linhas CC, aliada à fragilidade dos conversores, exige a utilização de algoritmos capazes de identificar corretamente a ocorrência de faltas em um reduzido intervalo de tempo. Neste sentido, este trabalho tem por objetivo a elaboração de uma nova metodologia de proteção que possa ser aplicada na proteção primária de sistemas HVDC, especialmente para redes MTDC. Para tanto, foi elaborado um modelo detalhado de rede MTDC com três terminais e, a partir dos dados obtidos por meio de extensivas simulações de falta, foram identificadas características dos sinais de corrente na linha CC capazes de auxiliar na proteção da rede. Pela utilização da Transformada wavelet, análise de componentes principais e sistemas Genético-Fuzzy, foi possível a elaboração de um algoritmo de proteção sem comunicação, rápido, confiável e seletivo para utilização em redes MTDC. Adicionalmente, foi realizada a implementação em hardware do algoritmo proposto, evidenciando sua aplicabilidade em sistemas reais. A metodologia proposta foi capaz de garantir seletividade, confiabilidade e velocidade de atuação ao sistema de proteção, identificando corretamente faltas nos condutores CC em menos de 1,5 ms. / Recent progress regarding semiconductor devices used in AC/DC conversion led to the use of Voltage Source Converters (VSC) in High Voltage Direct Current (HVDC) power transmission systems. AN advantage of using VSCs it to simplify the creation of Multi-terminal HVDC (MTDC) networks. However, the severity of DC faults, combined with the converters vulnerability, requests the use of algorithms able to correctly identify fault occurrences in a short period of time. Therefore, this work aims to elaborate a new primary protection methodology that could be applied to HVDC systems, especially in MTDC networks. For this purpose, a detailed three terminals MTDC network has been modeled and, through extensive computational faulty simulations, DC current characteristics that are able to assist network protection methods were identified. By means of the wavelet transform, principal component analysis and genetic fuzzy systems, it was possible to develop a fast, reliable an selective non-unit protection for MTDC grids. Moreover, the proposed algorithm was implemented in hardware, emphasizing its applicability in actual systems. The proposed methodology was able to ensure selectivity, reliability and speed of operation, correctly identifying DC faults in less than 1.5 ms.
2

Um novo algoritmo de proteção para redes HVDC multiterminais / A novel protection algorithm for multiterminal HVDC grids

Bertho Junior, Rui 24 August 2017 (has links)
Recentes avanços em relação aos dispositivos semicondutores utilizados no processo de conversão CA/CC levaram à aplicação de conversores fonte de tensão, do inglês Voltage Source Converter (VSC), na transmissão de energia elétrica em altas tensões e corrente contínua, do inglês High Voltage Direct Current (HVDC). Uma das vantagens da utilização de VSCs é simplificr o processo de criação de redes HVDC com múltiplos terminais, identificadas pela sigla em inglês Multi-terminal HVDC (MTDC). Entretanto, a severidade das faltas em linhas CC, aliada à fragilidade dos conversores, exige a utilização de algoritmos capazes de identificar corretamente a ocorrência de faltas em um reduzido intervalo de tempo. Neste sentido, este trabalho tem por objetivo a elaboração de uma nova metodologia de proteção que possa ser aplicada na proteção primária de sistemas HVDC, especialmente para redes MTDC. Para tanto, foi elaborado um modelo detalhado de rede MTDC com três terminais e, a partir dos dados obtidos por meio de extensivas simulações de falta, foram identificadas características dos sinais de corrente na linha CC capazes de auxiliar na proteção da rede. Pela utilização da Transformada wavelet, análise de componentes principais e sistemas Genético-Fuzzy, foi possível a elaboração de um algoritmo de proteção sem comunicação, rápido, confiável e seletivo para utilização em redes MTDC. Adicionalmente, foi realizada a implementação em hardware do algoritmo proposto, evidenciando sua aplicabilidade em sistemas reais. A metodologia proposta foi capaz de garantir seletividade, confiabilidade e velocidade de atuação ao sistema de proteção, identificando corretamente faltas nos condutores CC em menos de 1,5 ms. / Recent progress regarding semiconductor devices used in AC/DC conversion led to the use of Voltage Source Converters (VSC) in High Voltage Direct Current (HVDC) power transmission systems. AN advantage of using VSCs it to simplify the creation of Multi-terminal HVDC (MTDC) networks. However, the severity of DC faults, combined with the converters vulnerability, requests the use of algorithms able to correctly identify fault occurrences in a short period of time. Therefore, this work aims to elaborate a new primary protection methodology that could be applied to HVDC systems, especially in MTDC networks. For this purpose, a detailed three terminals MTDC network has been modeled and, through extensive computational faulty simulations, DC current characteristics that are able to assist network protection methods were identified. By means of the wavelet transform, principal component analysis and genetic fuzzy systems, it was possible to develop a fast, reliable an selective non-unit protection for MTDC grids. Moreover, the proposed algorithm was implemented in hardware, emphasizing its applicability in actual systems. The proposed methodology was able to ensure selectivity, reliability and speed of operation, correctly identifying DC faults in less than 1.5 ms.
3

Secure optimal operation and control of integrated AC/MTDC meshed grids

Akhter, Faheem January 2015 (has links)
Offshore wind energy is seen as the most promising source of electricity generation for achieving the European renewable energy targets. A number of wind farms are planned and under installation to collect the huge potential of wind energy at farther distances in the North Sea. The number of HVDC links in the North Sea is expected to increase with the development of offshore installations in Round 3 of the UK offshore windfarm programme. The increasing number of HVDC links and high power transfer control requirements leads to the formation of Multi-Terminal HVDC (MTDC) grid systems, which have become possible due to the technical advancements of VSC based HVDC systems. Additionally, a meshed MTDC grid structure can also provide interconnections for power trade across the Europe, which can help in better utilisation of power from offshore installations and can also support the AC network in tackling wind power variation issues. However, the integration of the meshed MTDC grid with the existing AC grid has more challenges to overcome alongside the added advantages. One of the major challenge is to ensure the secure and optimal operation of the combined AC/MTDC grid considering stability requirements of the AC and DC grids in different operating conditions. The behaviour of the DC grid is governed by the fast acting controllers due to the high number of power electronic equipment unlike AC grid. In combined operation the response to a disturbance of two integrated grids can be different. The power balancing, co-ordination and dispatch requirements need to be identified, to implement appropriate controls and formulate a control structure for combined operation of two grids with different characteristics under normal and disturbance conditions. In this thesis, the basic principles of well-established three-layered AC grid control is employed to identify the power balancing, coordination and dispatch requirements of the DC grid. Appropriate control methods are proposed for primary, secondary and tertiary control layers in order to accomplish the identified requirements for the secure and optimal operation of combined AC/MTDC grids. Firstly, a comparison study is performed on different power balancing controls to find the most suitable control method for the primary control of the meshed DC grid. Secondly, the combined AC/DC grid power flow method is proposed to provide updated references of the VSC station in order to maintain coordinated power flow control under secondary control layers. Finally, security constraint optimization method for combined AC/DC grid is proposed for economic dispatch under the tertiary control layer of the three-layered hierarchal control. A number of case studies are performed to implement the proposed control methods on a combined AC/DC test case network. The performance of the proposed control methods is validated in a hierarchical control structure for secure and optimal operation integrated AC/MTDC grids.
4

Transient stability of high voltage AC-DC electric transmission systems / Stabilité transitoire des systèmes de transmission électrique haute tension AC-DC

Gonzalez-Torres, Juan Carlos 29 January 2019 (has links)
Les nouvelles politiques adoptées par les autorités nationales ont encouragé pendant les dernières années l'intégration à grande échelle des systèmes d'énergie renouvelable (RES). L'intégration à grande échelle des RES aura inévitablement des conséquences sur le réseau de transport d'électricité tel qu'il est conçu aujourd'hui, car le transport de l'électricité massif sur de longues distances pourrait amener les réseaux de transport à fonctionner près de leurs limites, réduisant ainsi leurs marges de sécurité. Des systèmes de transport d’électricité plus complexes seront donc nécessaires.Dans ce scénario, les systèmes de transmission à Courant Continu Haute Tension (HVDC) constituent la solution la plus intéressante pour le renforcement et l'amélioration des réseaux à Courant Alternatif (AC) existants, non seulement en utilisant des configurations point à point, mais aussi dans des configurations multi-terminales. L'introduction des systèmes HVDC aboutira à terme à un réseau électrique hybride haute tension AC/DC, qui doit être analysé comme un système unique afin de mieux comprendre les interactions entre le réseau AC et le réseau DC.Cette thèse porte sur l'analyse de la stabilité transitoire des systèmes de transmission électrique hybrides AC/DC. Plus particulièrement, deux questions ont été abordées: Quel est l'impact d'un défaut du réseau DC sur la stabilité transitoire du réseau AC? Comment est-il possible de se servir des systèmes de transmission DC en tant qu'actionneurs afin d'améliorer la stabilité transitoire AC ?Dans la première partie de ce travail, les modèles mathématiques du réseau hybride AC/DC sont décrits ainsi que les outils nécessaires à l'analyse du système en tenant compte de sa nature non linéaire. Ensuite, une analyse approfondie de la stabilité transitoire du réseau électrique dans le cas particulier d'un court-circuit dans le réseau DC et l'exécution des stratégies de protection correspondantes sont effectuées. En complément, des indicateurs de stabilité et des outils pour dimensionner les futurs réseaux de la MTDC afin de respecter les contraintes des stratégies de protection existantes sont proposés.La deuxième partie de la thèse porte sur les propositions de commande pour la modulation des références de puissance des systèmes de transmission HVDC dans le but d'améliorer la stabilité transitoire du système AC connecté à ce réseau DC. Tout d'abord, nous axons notre étude sur le contrôle non linéaire des liaisons HVDC point à point dans des liaisons hybrides AC/DC. La compensation rapide des perturbations de puissance, l'injection de puissance d'amortissement et l'injection de puissance de synchronisation sont identifiées comme des mécanismes par lesquels les systèmes HVDC peuvent améliorer les marges de stabilité des réseaux AC.Enfin, une stratégie de contrôle pour l'amélioration de la stabilité transitoire par injection de puissance active dans par un réseau MTDC est proposée. Grâce à la communication entre les stations, la commande décentralisée proposée injecte la puissance d'amortissement et de synchronisation entre chaque paire de convertisseurs en utilisant uniquement des mesures au niveau des convertisseurs. L'implémentation proposée permet d'utiliser au maximum la capacité disponible des convertisseurs en gérant les limites de puissance d'une manière décentralisée. / The new policy frameworks adopted by national authorities has encouraged the large scale-integration of Renewable Energy Systems (RES) into bulk power systems. The large-scale integration of RES will have consequences on the electricity transmission system as it is conceived today, since the transmission of bulk power over long distances could lead the existing transmission systems to work close to their limits, thus decreasing their dynamic security margins. Therefore more complex transmissions systems are needed.Under this scenario, HVDC transmission systems raise as the most attractive solution for the reinforcement and improvement of existing AC networks, not only using point-to-point configurations, but also in a Multi-Terminal configuration. The introduction of HVDC transmission systems will eventually result in a hybrid high voltage AC/DC power system, which requires to be analyzed as a unique system in order to understand the interactions between the AC network and the DC grid.This thesis addresses the transient stability analysis of hybrid AC/DC electric transmission systems. More in particular, two questions sought to be investigated: What is the impact of a DC contingency on AC transient stability? How can we take advantage of the of DC transmission systems as control inputs in order to enhance AC transient stability?In the first part of this work, the mathematical models of the hybrid AC/DC grid are described as well as the necessary tools for the analysis of the system taking into account its nonlinear nature. Then, a thorough analysis of transient stability of the power system in the particular case of a DC fault and the execution of the corresponding protection strategies is done. As a complement, stability indicators and tools for sizing future MTDC grids in order to respect the constraints of existing protection strategies are proposed.The second part of the thesis addresses the control proposals for the modulation of power references of the HVDC transmission systems with the purpose of transient stability enhancement of the surrounding AC system. Firstly, we focus our study in the nonlinear control of point-to-point HVDC links in hybrid corridors. Fast power compensation, injection of damping power and injection of synchronizing power are identified as the mechanisms through which HVDC systems can improve stability margins.Finally, a control strategy for transient stability enhancement via active power injections of an MTDC grid is proposed. Using communication between the stations, the proposed decentralized control injects damping and synchronizing power between each pair of converters using only measurements at the converters level. The proposed implementation allows to fully use the available headroom of the converters by dealing with power limits in a decentralized way.
5

Hybrid AC-High Voltage DC Grid Stability and Controls

January 2017 (has links)
abstract: The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient features. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
6

Etude d’un convertisseur DC-DC pour les réseaux haute tension à courant continu (HVDC) : modélisation et contrôle du convertisseur DC-DC modulaire multiniveaux (M2DC) / A DC-DC power converter study for High Voltage Direct Current (HVDC) grid : Model and control of the DC-DC Modular Multilevel Converter (M2DC)

Li, Yafang 11 July 2019 (has links)
Les travaux présentés dans ce mémoire portent sur les convertisseurs continu-continu (DC/DC) pour les réseaux de transport à Courant Continu (HVDC) dans un contexte de réseau maillé de type Multi Terminaux DC (MTDC). Dans ce genre de réseau, les convertisseurs DC/DC sont nécessaires pour interconnecter ces réseaux. L’objectif de ce travail est donc d’étudier un convertisseur DC/DC pour des applications à haute tension et forte puissance. De nombreux convertisseurs DC/DC classiques existent, mais ne sont pas adaptés à ces niveaux de tension et puissance. Le volume et coût sont les points clés de l’étude pour l’industrialisation des structures dédiées aux réseaux HVDC. Parmi les structures identifiées, le convertisseur DC-DC Modulaire Multiniveaux (M2DC), récent et compact, a été finalement choisi. Le travail proposé développe l’étude du M2DC en régime établi et une modélisation en modèle moyen de ce convertisseur. Ensuite, des lois de contrôle sont proposées pour valider les analyses précédentes sur la base du principe de l’inversion du modèle. Le travail vise enfin à valider les analyses et le contrôle à l’aide de la maquette du Convertisseur Modulaire Multiniveaux (MMC) du L2EP. Pour cela, un dimensionnement du M2DC basé sur le MMC existant est proposé. Enfin, des simulations HIL (Hardware-In-the-Loop) valident les analyses et montrent la faisabilité du prototypage du M2DC / This work is based on Multi Terminal Direct Current (MTDC) grids. In the MTDC grid, DC/DC converter stations are needed to connect different HVDC grids. A lot of DC/DC converters have been studied and developed, but are not suitable for high voltage and great power constraints. Therefore, the objective of this work is the study of a DC/DC converter for high voltage and great power applications. For the potentially HVDC applications, the volume and costs are major criteria. According to this, a high voltage and great power potential DC/DC converter is selected, which is the DC-DC Modular Multilevel Converter (M2DC). Focusing on the M2DC, the work proposes analyses in steady state and builds an average model for the converter. Based on the average model, the basic control algorithm for the converter is developed to validate the previous analysis. Since the thesis aims to use the existing L2EP Modular Multilevel Converter (MMC) to test the M2DC model and control, a design of the M2DC based on MMC is proposed. Finally, the M2DC HIL (Hardware In-the-Loop) simulations results are presented confirming previous analyses and allowing to go on to prototyping the M2DC on the base of the existing MMC
7

Reglering av effektflöde i HVDC-system genom centraliserad och distribuerad spänningskontroll i realtid

Ahmadi, Seyedhesam, Bahmani, Mehrdad January 2019 (has links)
“High voltage direct current” (HVDC) teknologi har blivit allt viktigare teknik för att integrera förnybara energikällor i elnätet. För att styra ett sådant elsystem på bästa möjliga sätt krävs optimala kontrollstatergier både för omvandlarna och nätet. Så syftet med detta projekt är att undersöka hur olika regleringsmetoder, såsom centraliseradoch distribuerad spänningskontroll, kan påverka driften i ett 4-terminal HVDC-system. Ett optimalt effektflöde uppstår i systemet endast när likspänningen inte avviker från sitt börvärde och det uppnås genom att ha aktiv effekt regulator i varje nod i nätet. Olika scenarier som ändring av effektens börvärde och omvandlaravbrott har simulerats med hjälp av HIL-processen i realtid. Simuleringarna hjälper till att analysera hur väl dem implementerade regleringsmetoder i nodernas regulatorer hantera dessa förändringar. Resultatet ger bevis på att både centraliseradoch distruebued metoden har positiva och negativa aspekter. Fördelen med centraliserade metoden är att den ger en väldefinierad operationspunkt men den hanterar den inte svåra transienter (tex. avbrott) vilket distribuerade metoden gör.
8

Operation and Control of HVDC Grids

Johansson, Henrik, Tunelid, Lucas January 2020 (has links)
In order to meet the increasing demand ofenergy in today’s society while at the same time minimizing theenvironmental impact, renewable energy sources will be requiredto be integrated into the existing energy mix. Technologicaladvances in high voltage direct current (HVDC) grids playa crucial role in making this possible. Therefore the purposeof this project has been to validate the properties of basiccontrol strategies in terms of how they respond to four differentsimulation cases. All simulations have been conducted on asimplified version of the CIGR ́E B4 test grid, consisting offour monopolar HVDC converters. After analyzing the resultsobtained from each control strategy it became evident thatprovided if the benefits of the redundancy introduced by amulti-terminal grid are to be fully utilized, a distributed voltagecontrol should be used. Moreover, after substituting one ofthe four internal controllers with an external one, it becameclear that simply deciding the droop constants based on resultsfrom the simulation model wouldn’t be sufficient for real worldapplications. / För att möta det ökande energibehovet i dagens samhälle, samtidigt som energiproduktionens miljöpåverkan ska minimeras, krävs det att förnyelsebara energikällor integreras i den existerande energimixen. Tekniska framsteg inom högspända likströmsnät (HVDC) spelar en avgörande roll i att göra detta möjligt. Därför har syftet med detta projekt varit att validera egenskaperna hos grundläggande kontrollstrategier efter hur dem reagerar på fyra olika simuleringsfall. Alla simuleringar har genomförts på en förenklad version av CIGRE´ B4 testsystem, bestående av fyra monopolära HVDC omriktare. Efter att analyserat de erhållna resultaten från varje kontrollstrategi blev det uppenbart att om fördelarna med multiterminala elnät skulle uppnås, bör en distribuerad spänningskontroll användas. Dessutom, efter att ha bytt ut en av dem fyra interna kontrollerna med en extern, visade det sig att endast bestämma droppkonstanterna baserat på resultat från simuleringsmodellen inte är tillräckligt för verkliga applikationer. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
9

Contrôle et opération des réseaux HVDC multi-terminaux à base de convertisseurs MMC / Control and energy management of MMC-based multi-terminal HVDC grids

Shinoda, Kosei 21 November 2017 (has links)
Cette thèse porte sur la commande de réseaux multi-terminaux à courant continu (MTDC) basés sur des convertisseurs multiniveaux modulaires (MMCs).Tout d’abord, notre attention se focalise sur l'énergie stockée en interne dans le MMC qui constitue un degré de liberté additionnel apporté par sa topologie complexe. Afin d’en tirer le meilleur parti, les limites de l’énergie interne sont formulées mathématiquement.Afin de maîtriser la dynamique de la tension DC, l’utilisation de ce nouveau degré de liberté s’avère d’une grande importance. Par conséquent, une nouvelle de stratégie de commande, nommée «Virtual Capacitor Control», est proposée. Cette nouvelle méthode de contrôle permet au MMC de se comporter comme s’il possédait un condensateur de taille réglable aux bornes, contribuant ainsi à l’atténuation des fluctuations de la tension DC.Enfin, la portée de l’étude est étendue au réseau MTDC. L'un des défis majeurs pour un tel système est de faire face à une perte soudaine d'une station de convertisseur qui peut entraîner une grande variation de la tension du système. A cet effet, la méthode de statisme de tension est la plus couramment utilisée. Cependant, l'analyse montre que l'action de contrôle souhaitée risque de ne pas être réalisée lorsque la marge disponible de réserve de puissance du convertisseur est insuffisante. Nous proposons donc une nouvelle structure de contrôle de la tension qui permet de fournir différentes actions en fonction du signe de l'écart de la tension suite à une perturbation, associée à un algorithme qui détermine les paramètres de statisme en tenant compte du point de fonctionnement et de la réserve disponible à chaque station. / The scope of this thesis includes control and management of the Modular Multilevel Converter (MMC)-based Multi-Terminal Direct Current (MTDC).At first, our focus is paid on the internally stored energy, which is the important additional degree of freedom brought by the complex topology of MMC. In order to draw out the utmost of this additional degree of freedom, an in-depth analysis of the limits of this internally stored energy is carried out, and they are mathematically formulated.Then, this degree of freedom of the MMC is used to provide a completely new solution to improve the DC voltage dynamics. A novel control strategy, named Virtual Capacitor Control, is proposed. Under this control, the MMC behaves as if there were a physical capacitor whose size is adjustable. Thus, it is possible to virtually increase the equivalent capacitance of the DC grid to mitigate the DC voltage fluctuations in MTDC systems.Finally, the scope is extended to MMC-based MTDC grid. One of the crucial challenges for such system is to cope with a sudden loss of a converter station which may lead to a great variation of the system voltage. The voltage droop method is commonly used for this purpose. The analysis shows that the desired control action may not be exerted when the available headroom of the converter stations are insufficient. We thus propose a novel voltage droop control structure which permits to provide different actions depending on the sign of DC voltage deviation caused by the disturbance of system voltage as well as an algorithm that determines the droop parameters taking into account the operating point and the available headroom of each station.
10

Contrôle d'un système multi-terminal HVDC (MTDC) et étude des interactions entre les réseaux AC et le réseau MTDC. / Control of a multi-terminal HVDC (MTDC) system and study of the interactions between the MTDC and the AC grids.

Akkari, Samy 29 September 2016 (has links)
La multiplication des projets HVDC de par le monde démontre l'engouement toujours croissant pour cette technologie de transport de l'électricité. La grande majorité de ces transmissions HVDC correspondent à des liaisons point-à-point et se basent sur des convertisseurs AC/DC de type LCC ou VSC à 2 ou 3 niveaux. Les travaux de cette thèse se focalisent sur l'étude, le contrôle et la commande de systèmes HVDC de type multi-terminal (MTDC), avec des convertisseurs de type VSC classique ou modulaire multi-niveaux. La première étape consiste à obtenir les modèles moyens du VSC classique et du MMC. La différence fondamentale entre ces deux convertisseurs, à savoir la possibilité pour le MMC de stocker et de contrôler l'énergie des condensateurs des sous-modules, est détaillée et expliquée. Ces modèles et leurs commandes sont ensuite linéarisés et mis sous forme de représentations d'état, puis validés en comparant leur comportement à ceux de modèles de convertisseurs plus détaillés à l'aide de logiciels de type EMT. Une fois validés, les modèles d'état peuvent être utilisés afin de générer le modèle d'état de tout système de transmissions HVDC, qu'il soit point-à-point ou MTDC. La comparaison d'une liaison HVDC à base de VSCs classiques puis de MMCs est alors réalisée. Leurs valeurs propres sont étudiées et comparées, et les modes ayant un impact sur la tension DC sont identifiés et analysés. Cette étude est ensuite étendue à un système MTDC à 5 terminaux, et son analyse modale permet à la fois d'étudier la stabilité du système, mais aussi de comprendre l'origine de ses valeurs propres ainsi que leur impact sur la dynamique du système. La méthode de décomposition en valeurs singulières permet ensuite d'obtenir un intervalle de valeurs possibles pour le paramètre de"voltage droop", permettant ainsi le contrôle du système MTDC tout en s'assurant qu'il soit conforme à des contraintes bien définies, comme l'écart maximal admissible en tension DC. Enfin, une proposition de "frequency droop" (ou "statisme"), permettant aux convertisseurs de participer au réglage de la fréquence des réseaux AC auxquels ils sont connectés, est étudiée. Le frequency droop est utilisé conjointement avec le voltage droop afn de garantir le bon fonctionnement de la partie AC et de la partie DC. Cependant, l'utilisation des deux droop génère un couplage indésirable entre les deux commandes. Ces interactions sont mathématiquement quantifiées et une correction à apporter au paramètre de frequency droop est proposée. Ces résultats sont ensuite validés par des simulations EMT et par des essais sur la plate-forme MTDC du laboratoire L2EP. / HVDC transmission systems are largely used worldwide, mostly in the form of back-to-back and point-to-point HVDC, using either thyristor-based LCC or IGBT-based VSC. With the recent deployment of the INELFE HVDC link between France and Spain, and the commissioning in China of a three-terminal HVDC transmission system using Modular Multilevel Converters (MMCs), a modular design of voltage source converters, the focus of the scientific community has shifted onto the analysis and control of MMC-based HVDC transmission systems. In this thesis, the average value models of both a standard 2-level VSC and an MMC are proposed and the most interesting difference between the two converter technologies -the control of the stored energy in the MMC- is emphasised and explained. These models are then linearised, expressed in state-space form and validated by comparing their behaviour to more detailed models under EMT programs. Afterwards, these state-space representations are used in the modelling of HVDC transmission systems, either point-to-point or Multi-Terminal HVDC (MTDC). A modal analysis is performed on an HVDC link, for both 2-level VSCs and MMCs. The modes of these two systems are specifed and compared and the independent control of the DC voltage and the DC current in the case of an MMC is illustrated. This analysis is extended to the scope of a 5-terminal HVDC system in order to perform a stability analysis, understand the origin of the system dynamics and identify the dominant DC voltage mode that dictates the DC voltage response time. Using the Singular Value Decomposition method on the MTDC system, the proper design of the voltage-droop gains of the controllers is then achieved so that the system operation is ensured within physical constraints, such as the maximum DC voltage deviation and the maximum admissible current in the power electronics. Finally, a supplementary droop "the frequency-droop control" is proposed so that MTDC systems also participate to the onshore grids frequency regulation. However, this controller interacts with the voltage-droop controller. This interaction is mathematically quantified and a corrected frequency-droop gain is proposed. This control is then illustrated with an application to the physical converters of the Twenties project mock-up.

Page generated in 0.0463 seconds