Return to search

Voltage Stability at Hydropower Stations Influenced by close-located Wind Farms

The number of integrated wind farms into the power system is increasing as well as the total installed wind power capacity, which may cause voltage stability concerns. Additionally, there are European Transmission System Operators (TSOs) that do notinvolve wind farms in contributing to the voltage control in any significant extent. In the on-going project by the European Network of Transmission System Operators for Electricity (ENTSO-E), to update the European grid requirements, this will probably be changed. The aim of this Master thesis is to demonstrate the voltage variations in the high voltage grid during different operational conditions. Thereafter, clarify when high voltages may occur at the connection point of the studied wind farm. Furthermore, it is investigated whether the wind farm is able to regulate the voltage in the cases when high voltages occur. The load flow and switching studies are performed with the software tool Power System Simulator for Engineering (PSS/E) version 32.1.1. The grid model represents a part of the Swedish high voltage grid. Since voltage stability often is a local issue, special modelling aspects has been performed at the hydropower generators in the close-located area of the wind farm. The main conclusions of this Master thesis are that high voltages is associated with low load situations, i.e., mostly during summer nights. Furthermore, the studied close-located reactor is not able to keep the voltage within desired level by itself. Finally, it has been shown that the wind farm is technically able to contribute to the voltage stability in the close-located area. But since wind power is an intermittent power source it makes the voltage regulating capacity less reliable compared to hydropower. The results and conclusions given in this Master thesis have also been summarized in a conference paper for The 11th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, see Lidström et al [35].

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-181017
Date January 2012
CreatorsLidström, Erica
PublisherUppsala universitet, Elektricitetslära
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC ES, 1650-8300 ; 12017

Page generated in 0.002 seconds