Return to search

MoM modeling of metal-dielectric structures using volume integral equations

Modeling of patch antennas and resonators on arbitrary dielectric substrates using surface RWG and volume edge based basis functions and the Method of Moments is implemented. The performance of the solver is studied for different mesh configurations. The results obtained are tested by comparison with experiments and Ansoft HFSS v9 simulator. The latter uses a large number of finite elements (up to 200K) and adaptive mesh refinement, thus providing the reliable data for comparison. The error in the resonant frequency is estimated for canonical resonator structures at different values of the relative dielectric constant ƒÕr, which ranges from 1 to 200. The reported results show a near perfect agreement in the estimation of resonant frequency for all the metal-dielectric resonators. Behavior of the antenna input impedance is tested, close to the first resonant frequency for the patch antenna. The error in the resonant frequency is estimated for different structures at different values of the relative dielectric constant ƒÕr, which ranges from 1 to 10. A larger error is observed in the calculation of the resonant frequency of the patch antenna. Moreover, this error increases with increase in the dielectric constant of the substrate. Further scope for improvement lies in the investigation of this effect.

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1773
Date06 May 2004
CreatorsKulkarni, Shashank Dilip
ContributorsBrian King, Committee Member, Reinhold Ludwig, Committee Member, David Cyganski, Committee Member, Sergey N. Makarov, Advisor
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0066 seconds