Return to search

Media Access Control for Wireless Sensor and Actuator Networks

In a wireless network, the medium is a shared resource. The nodes in the network negotiate access of the shared resource using the Medium Access Control (MAC) protocol. The design of a MAC protocol for a sensor node is not the same as that for a wireless transceiver. Due to the transceiver characteristics, the MAC protocol design is limited in terms of medium access methods. However, in most cases, the protocols rely on simple access methods i.e. Time Division Multiple Access (TDMA) or Carrier Sense Multiple Access / Collision Avoidance (CSMA / CA). Control and monitoring applications, running over a wireless network, are typical examples of Wireless Sensor Actuator Network (WSAN) application in industries. In an industrial network, the message deliveries must be time-bounded otherwise, they are of no use. This report aims to present the thesis work carried out at ABB AB, Västerås. The purpose of this thesis was to compare the performance of WLAN and WirelessHART when it comes to control applications. For the purpose of WLAN, the media access schemes are analyzed in terms of deadline misses. There are other metrices for the performance evaluation but our focus was on the latency, since it is very important in the field of industrial automation. NS-2 was used for the purpose of MAC layer analysis and it is also shown that PCF gives better performance as compared to DCF, in terms of deadline misses. Finally, WLAN is proven to accommodate more control loops as compared to WirelessHART for a given scenario.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-79348
Date January 2012
CreatorsNabi, Muaz Un
PublisherLinköpings universitet, Kommunikationssystem, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0873 seconds