Return to search

Rétention du deutérium et migration du carbone dans Tore Supra / Carbon migration and deuterium retention in Tore Supra

Trois raisons poussent à caractériser et contrôler l´interaction plasma-surface dans les machines de fusion thermonucléaire : 1/ la limitation du temps de vie des éléments de première paroi du fait de leur érosion par le plasma, 2/ la pollution de celui-ci par les particules érodées et la diminution des performances qui en découle et 3/ la rétention du gaz de travail (D, T) dans les parois ou dans les couches redéposée constituées de produits d´érosion. Dans les machines à mur carbone, les points 1/ et 3/ sont étroitement couplés, jouant un rôle capital dans le bilan de matière du fait de la forte affinité chimique du carbone avec l´hydrogène ou ses isotopes. Si le bilan érosion/redéposition est souvent obtenu à partir d'analyses post-mortem d´echantillons prélevés dans la machine, deux méthodes sont utilisées pour établir le bilan de rétention en quantifiant la quantité d'hydrogène piégée dans la paroi : les analyses post-mortem, et le bilan de gaz décharge par décharge. Ces deux méthodes conduisent à des estimations en fort désaccord, la quantité d´hydrogène piégée obtenue à partir des analyses post-mortem étant inférieure d'un facteur quatre à celle obtenue à partir du bilan de gaz. La raison en est que la première est résolue dans l´espace et intégrée sur le temps, alors que la seconde st une valeur globale pour toute la machine mais résolue choc à choc. Résoudre le désaccord entre les eux estimations précitées implique alors d´étendre les mesures post-mortem à l´ensemble des éléments de première paroi et le bilan de gaz à toute la période pendant laquelle ces éléments ont été utilisés (périodes sans plasma, ou pendant lesquelles la machine était ouverte). / Three reasons can be invoked to characterize and control plasma-surface interaction in thermonuclear fusion devices : 1/ the plasma erosion limits the lifetime of the first wall components, 2/ the penetration of eroded particles in the plasma is the cause of fuel dilution and loss of performance and 3/ part of the fuel (D/T) is trapped in the wall or layers resulting from the redeposition of eroded particles. In carbon wall devices, points 1/ and 3/ are strongly coupled due to the chemical affinity of carbon with hydrogen or its isotopes. If the erosion/redeposition balance is often obtained from post-mortem analyses of samples extracted from the vacuum chamber, two methods are currently used to build the fuel balance, and particularly to quantify the amount of which trapped in the vessel : the post-mortem analyses cited above, and discharge per discharge gas balance. Estimations by these two methods exhibit a significant discrepancy, the amount of trapped hydrogen estimated by post-mortem being typically four times lower than that obtained from gas balance. The main reason is that the former value is resolved in space (it depends of the location of the sample in the vacuum vessel) but integrated in time (it concerns the whole period during which the sample was in the device), when the latter is a global value for the whole machine but is resolved discharge per discharge. For solving the discrepancy, one must perform post-mortemanalyses on a number of samples large enough for covering the whole vessel and extend gas balance measurements to the whole period during which the considered first wall elements were used, including the period in between plasmas and vents.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4072
Date25 October 2013
CreatorsPanayotis, Stephanie
ContributorsAix-Marseille, Monier Garbet, Pascale
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds