Rainwater harvesting, the act of capturing and storing rain, is an ancient practice that is increasingly utilized today by communities to address water supply needs. This thesis examines whether domestic rainwater harvesting systems (DRWHS) can be a sustainable solution as defined by social, water quality, and technical feasibility for water security in semi-arid, rural environments. For this study, 50 surveys and 17 stored rainwater analyses were conducted in San Jose Xacxamayo, Mexico, in conjunction with my Peace Corps work of implementing 82 DRWHS. Results showed that all DRWHS were socially feasible because of cultural acceptance and local capacity. Water quality analyses showed that four DRWHS contained coliform bacteria; deeming water unfit for human consumption. Technical feasibility, examined through climate analyses, showed an average year-round reliability of 20-30% under current and future rainfall regime. The DRWHS can be a sustainable water supply option with roof expansion and treatment prior to consumption.
Identifer | oai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-3235 |
Date | 24 June 2015 |
Creators | Neibaur, Elena E |
Publisher | FIU Digital Commons |
Source Sets | Florida International University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | FIU Electronic Theses and Dissertations |
Page generated in 0.0017 seconds