Nesse trabalho foi proposto investigar a estabilidade de fases do sistema zircônia-escândia (ScSZ) por meio do estudo termodinâmico de nanopartículas, na faixa de 0 a 20% em mol de Sc2O3, e a partir da introdução de um segundo aditivo (Dy2O3 e Nb2O5) ao ZrO2 contendo 10% em mol de Sc2O3 (10ScSZ). A estabilidade de fases do ScSZ foi avaliada com base em dados termodinâmicos determinados pelas técnicas de microcalorimetria de adsorção de água e calorimetria de dissolução à alta temperatura. As soluções sólidas foram sintetizadas pelo método de coprecipitação de hidróxidos. Dados termodinâmicos foram determinados para as formas polimórficas encontradas (monoclínica, tetragonal, cúbica, romboédrica β e γ) por difração de raios X no ScSZ. Esse trabalho resultou no diagrama de fases em nanoescala de tamanho de partícula-composição. Os efeitos produzidos pela introdução de aditivos na matriz de 10ScSZ foram investigados visando obter a possível estabilização da estrutura cúbica (c) e a supressão da transformação de fase c-β, característica do sistema binário. As composições foram sintetizadas por coprecipitação de hidróxidos e por reações em estado sólido para fins comparativos. Os materiais foram sinterizados convencionalmente e por sinterização assistida por campo elétrico. A estabilização completa da fase cúbica ocorreu a partir de teores molares de 1% de Dy2O3 e 0,5% de Nb2O5. O menor teor de Nb2O5 necessário para a estabilização da fase foi atribuído à provável formação da fase líquida durante a sinterização e ao menor tamanho do íon Nb5+. Os resultados de difratometria de raios X em alta temperatura e análise térmica mostraram que houve supressão da transição c-β. As amostras contendo 0,5% mol de Nb2O5 apresentaram valores de condutividade iônica similares aos do 10ScSZ sem aditivos em uma ampla faixa de temperatura com elevada estabilidade em um período de 170 h a 600 °C. / In this work, the phase stability of scandia-zirconia (ScSZ) system was investigated by the thermodynamic study of nanoparticles, within the range of 0 to 20 mol% Sc2O3, and by codoping of ZrO2-10 mol% Sc2O3 (10ScSZ) with Dy2O3 and Nb2O5. The phase stability of ScSZ was evaluated based on thermodynamic data collected by water adsorption microcalorimetry and high temperature oxide melt solution. Nanostructured zirconia-scandia solid solutions were synthesized by coprecipitaion method. Thermodynamic data were determined for ScSZ polymorphs (monoclinic, tetragonal, cubic, rhombohedral β and γ) found by X-ray diffraction. This systemic work resulted in an unprecedented phase diagram at the nanoscale of particle size-composition. The effects of additives on 10ScSZ were investigated aiming to stabilize the cubic (c) structure at room temperature and to suppress the characteristic cubic-rhombohedral β phase transformation. Compositions were prepared by coprecipitation and solid state reaction. Materials were sintered by conventional and spark plasma sintering. Full stabilization of the cubic phase was attained by 1 mol% Dy2O3 and 0.5 mol% Nb2O5 additions. The smallest Nb2O5 content required for cubic phase stabilization was attributed to liquid phase formation during sintering and to small ionic radius of Nb5+. Results of high temperature X-ray diffraction and thermal analysis show suppression of the c-β transformation. Samples containing 0.5 mol% Nb2O5 show total ionic conductivity similar to 10ScSZ without additives within a broad temperature range with high stability during 170 h at 600 °C.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10062016-134543 |
Date | 25 May 2016 |
Creators | Grosso, Robson Lopes |
Contributors | Muccillo, Eliana Navarro dos Santos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds