Return to search

Drought Adaptations of Hybrid Poplar Clones Commonly Grown on the Canadian Prairies

As a result of predicted climate change, environmental conditions may make woody plant species such as poplars (Populus spp.) vulnerable unless they are sufficiently adaptable to the new environment. This greenhouse study examined the responses of Hill, Northwest, Okanese and Walker hybrid poplar clones to drought, a potential outcome of a changing climate. Plants were grown from cuttings and subjected to two soil moisture treatments; a well-watered treatment and a drought conditioning treatment in which plants were subjected to cycles of soil moisture deficit. The first study examined growth and gas exchange following treatments, while the second study examined concurrent changes in leaf water potential and gas exchange during a period of increasing soil moisture deficit, following treatments.<p>
Hill and Okanese plants had reduced shoot:root ratios, possibly leading to more positive plant moisture balances compared to Northwest and Walker plants. Stomatal characteristics related to steady state gas exchange with Okanese plants having stomata predominantly on lower leaf surfaces, and lower stomatal conductance and Northwest plants having relatively large stomata and increased stomatal conductance. Hill and Okanese plants had the most responsive stomata, which began to close at much higher levels of leaf water potential (-0.45 and -0.54 MPa) than Northwest or Walker plants (-1.03 and -0.88 MPa); however, closure was more gradual in Okanese plants. Drought preconditioning resulted in stomatal closure occurring at higher leaf water potentials in droughted Northwest and Walker plants compared to well-watered plants. Regardless of soil moisture treatment, WUE was highest in Okanese and Walker plants. The drought treatment did however lead to increased WUE in Hill and Northwest plants.<p>
Overall, Okanese plants appear to be the best adapted to conditions of reduced soil moisture based on growth and physiological traits, while Northwest and Hill seem better suited to areas where moisture deficits are likely to be less frequent or less severe. Results indicate that variability exists in adaptability of hybrid poplar clones to drought, suggesting that there may also be other hybrid clones that are adaptable to reduced soil moisture conditions, which may merit further investigation.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-08052009-210212
Date07 August 2009
CreatorsNash, Roberta Mae
ContributorsBelanger, Nicolas, Silim, Salim, Van Rees, Ken, Bai, Yuguang, Knight, Diane
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-08052009-210212/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0028 seconds