Return to search

Numerical modelling of nonlinear interactions of waves with submerged structures : applied to the simulation of wave energy converters

This PhD is dedicated to the development of an advanced numerical model for simulating interactions between free surface waves of arbitrary steepness and rigid bodies in high amplitude motions. Based on potential theory, it solves the coupled dynamics of waves and structure with the implicit method by Van Daalen (1993), also named the acceleration potential method by Tanizawa (1995). The precision of this two-dimensional model is tested on a wide range of applications involving the forced motion or free motion of a submerged horizontal cylinder of circular cross-section : diffraction by a fixed cylinder, radiation by a cylinder in specified high amplitude motions, wave absorption by the Bristol cylinder. In each of these applications, numerical results are compared to experimental data or analytical solutions based on the linear wave theory, with a good agreement especially for small amplitude motions of the cylinder and small wave steepnesses. The irregular wave generation by a paddle and the possibility to add an extra circular cylinder are integrated in the model and illustrated on practical applications with simple wave energy converters. The model is finally extended to three dimensions, with preliminary results for a sphere in large amplitude heaving oscillations

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00680537
Date19 December 2011
CreatorsGuerber, Etienne
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0032 seconds