Orientador: Germán Jesus Lozada Cruz / Banca: Alexandre Nolasco de Carvalho / Banca: Waldemar Donizete Bastos / Resumo: Neste trabalho vamos estudar um modelo matemático que descreve as oscilações não lineares de uma ponte suspensa. Este modelo é dado por um sistema de equações diferenciais parciais que estão acopladas. Basicamente, estudaremos a existência e unicidade da solução fraca do sistema. Usaremos a teoria de operadores maximais monótonos para modelo linear e os semigrupos fortemente contínuos de contração para o modelo não linear. / Abstract: In this work we study a mathematical model which describes the nonlinear oscillations of a bridge suspended. This model is given by a system of partial di®erential equations which are coupled. Basically, we study the existence and uniqueness of weak solution of the system. We use the theory of maximal monotone operators to model linear and strongly continuous semigroups of contraction for the nonlinear model. / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000591399 |
Date | January 2009 |
Creators | Figueroa López, Rodiak Nicolai. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | São José do Rio Preto : [s.n.], |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 90 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0022 seconds