Spelling suggestions: "subject:"peak solutionution"" "subject:"weak solutionution""
1 |
Compactness, existence, and partial regularity in hydrodynamics of liquid crystalsHengrong Du (10907727) 04 August 2021 (has links)
<div>This thesis mainly focuses on the PDE theories that arise from the study of hydrodynamics of nematic liquid crystals. </div><div><br></div><div>In Chapter 1, we give a brief introduction of the Ericksen--Leslie director theory and Beris--Edwards <i>Q</i>-tensor theory to the PDE modeling of dynamic continuum description of nematic liquid crystals. In the isothermal case, we derive the simplified Ericksen--Leslie equations with general targets via the energy variation approach. Following this, we introduce a simplified, non-isothermal Ericksen--Leslie system and justify its thermodynamic consistency. </div><div><br></div><div>In Chapter 2, we study the weak compactness property of solutions to the Ginzburg--Landau approximation of the simplified Ericksen--Leslie system. In 2-D, we apply the Pohozaev type argument to show a kind of concentration cancellation occurs in the weak sequence of Ginzburg--Landau system. Furthermore, we establish the same compactness for non-isothermal equations with approximated director fields staying on the upper semi-sphere in 3-D. These compactness results imply the global existence of weak solutions to the limit equations as the small parameter tends to zero. </div><div><br></div><div>In Chapter 3, we establish the global existence of a suitable weak solution to the co-rotational Beris–Edwards system for both the Landau–De Gennes and Ball–Majumdar bulk potentials in 3-D, and then study its partial regularity by proving that the 1-D parabolic Hausdorff measure of the singular set is 0.</div><div><br></div><div>In Chapter 4, motivated by the study of un-corotational Beris--Edwards system, we construct a suitable weak solution to the full Ericksen--Leslie system with Ginzburg--Landau potential in 3-D, and we show it enjoys a (slightly weaker) partial regularity, which asserts that it is smooth away from a closed set of parabolic Hausdorff dimension at most 15/7.</div>
|
2 |
Pohyb stlačitelné tekutiny v časově proměnných oblastech / Compressible fluid motion in time dependent domainsSýkora, Petr January 2012 (has links)
In this work we study the existence of weak solutions for compressible Navier-Stokes equations in unbounded time dependent domains. Using the methods introduced in Feireisl E. Dynamics of Viscous Compressible Fluids we extend the results of article Feireisl E. Neustupa J. Stebel J., Convergence of a Brinkman-type penalization for compressible fluid flows, which studies the flow with a "no-slip" boundary condition on bounded domains. Next, we extend results of article Feireisl E. Kreml O. Nečasová Š. Neustupa J. Stebel J., Weak solutions to the barotropic Navier- Stokes system with slip boundary conditions in time dependent domains, which studies flow with compete Navier boundary condition. Finally, we discuss solutions for rotating fluid system. In this case, there are new members in momentum equation, representing the Coriolis and centrifugal force, which cause problems.
|
3 |
Kritéria regularity pro nestacionární nestlačitelné Navier-Stokesovy rovnice / Regularity criteria for instationary incompressible Navier-Stokes equationsAxmann, Šimon January 2012 (has links)
Title: Regularity criteria for instationary incompressible Navier-Stokes equations Author: Šimon Axmann Institute: Mathematical Institute of Charles University Supervisor: doc. Mgr. Milan Pokorný, Ph.D., Mathematical Institute of Charles University Abstract: In the present thesis we study the global conditional regularity of weak solutions to the Cauchy problem for instationary incompressible Navier-Stokes equations in three space dimensions. In the first section, we present an overview of known conditions implying the full regularity of the equations under conside- ration. For the sake of clarity, we expose only the regularity criteria on the scale of Lebesgue spaces, especially in terms of the velocity and its components, the gradient of the velocity and its components, the pressure and the vorticity. In the subsequent sections, we generalize four regularity criteria using two different techniques. We are able to replace one velocity component or its gradient, consi- dered in the known results, by a projection of the velocity into a general vector field. For the purpose of the second method, we also generalize the multiplicative Gagliardo-Nirenberg inequality.
|
4 |
Matematická analýza regularizovaného modelu viskoelastické nenewtonovské tekutiny / Matematická analýza regularizovaného modelu viskoelastické nenewtonovské tekutinyŠalom, Pavel January 2012 (has links)
In this thesis we provide an existence result for a regularized model of viscoelastic non- newtonian fluid. We consider incompressible fluid with shear rate dependent viscosity and with Cauchy stress tensor capable to describe stress relaxation. An elastic part of the Cauchy stress tensor is governed by Oldroyd-type differential equation. In particular, we are interested in fluids with strong shear thinning effect. We prove that if the viscosity function µ (D) is such that tensor µ (D) D is p-coercive, monotone and has (p − 1)-growth for p > 6 5 and some other additional assumptions are satisfied, then there exists a solution to the system of PDEs describing the flow in a bounded domain. The proof is not simple because the convective term is not integrable with a high power. The problem is solved using Lipschitz truncation method for evolution PDEs. 1
|
5 |
Um modelo matemático de suspensão de pontesFigueroa López, Rodiak Nicolai [UNESP] 20 March 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-03-20Bitstream added on 2014-06-13T19:47:28Z : No. of bitstreams: 1
figueroalopez_rn_me_sjrp.pdf: 751046 bytes, checksum: 50788892bf3e9440cb207b1489c88d57 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho vamos estudar um modelo matemático que descreve as oscilações não lineares de uma ponte suspensa. Este modelo é dado por um sistema de equações diferenciais parciais que estão acopladas. Basicamente, estudaremos a existência e unicidade da solução fraca do sistema. Usaremos a teoria de operadores maximais monótonos para modelo linear e os semigrupos fortemente contínuos de contração para o modelo não linear. / In this work we study a mathematical model which describes the nonlinear oscillations of a bridge suspended. This model is given by a system of partial di®erential equations which are coupled. Basically, we study the existence and uniqueness of weak solution of the system. We use the theory of maximal monotone operators to model linear and strongly continuous semigroups of contraction for the nonlinear model.
|
6 |
Um modelo matemático de suspensão de pontes /Figueroa López, Rodiak Nicolai. January 2009 (has links)
Orientador: Germán Jesus Lozada Cruz / Banca: Alexandre Nolasco de Carvalho / Banca: Waldemar Donizete Bastos / Resumo: Neste trabalho vamos estudar um modelo matemático que descreve as oscilações não lineares de uma ponte suspensa. Este modelo é dado por um sistema de equações diferenciais parciais que estão acopladas. Basicamente, estudaremos a existência e unicidade da solução fraca do sistema. Usaremos a teoria de operadores maximais monótonos para modelo linear e os semigrupos fortemente contínuos de contração para o modelo não linear. / Abstract: In this work we study a mathematical model which describes the nonlinear oscillations of a bridge suspended. This model is given by a system of partial di®erential equations which are coupled. Basically, we study the existence and uniqueness of weak solution of the system. We use the theory of maximal monotone operators to model linear and strongly continuous semigroups of contraction for the nonlinear model. / Mestre
|
7 |
Soluções fracas das equações de Euler incompressíveis / Weak solutions of the incompressible Euler equationsBronzi, Anne Caroline, 1984- 16 August 2018 (has links)
Orientadores: Helena Judith Nussenzveig Lopes, Milton da Costa Lopes Filho / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T19:55:10Z (GMT). No. of bitstreams: 1
Bronzi_AnneCaroline_D.pdf: 2733933 bytes, checksum: 87251756cbb4b7f97bdfe363274bea04 (MD5)
Previous issue date: 2010 / Resumo: Neste trabalho estudamos o conceito de solução fraca de equações que modelam fluidos ideais incompressíveis. Mais precisamente, estudamos exemplos que evidenciam deficiências na definição de solução fraca das equações de Euler. Um exemplo é o fluxo de Shnirelman, que é uma solução fraca das equações de Euler, no toro bidimensional, com suporte compacto no tempo. Isso implica que as soluções fracas das equações de Euler não são únicas. Nesse trabalho construímos uma aproximação numérica do fluxo de Shnirelman, com o objetivo de obter uma visualização da estrutura do fluxo. Em um trabalho conjunto com Shnirelman, modificamos a construção original a fim de obter um fluxo com uma estrutura física mais interessante e através da qual a visualização da cascata inversa de energia se torna mais clara. Recentemente, De Lellis e Székelyhidi também construíram soluções fracas das equações de Euler, no espaço todo, com suporte compacto no tempo e espaço. A técnica utilizada por eles é inovadora e se mostrou eficiente na construção de contra-exemplos variados. Utilizamos a técnica desenvolvida por De Lellis e Székelyhidi para construir soluções fracas das equações de Euler 2D com traçador passivo que tenham suporte compacto no tempo e espaço. Por fim, em nosso trabalho também estudamos as equações de Euler com simetria helicoidal, tendo demonstrado existência global, no tempo, de soluções fracas, na ausência de rodopio helicoidal, desde que a vorticidade inicial esteja em Lp, com p > 4=3, e seja de suporte compacto no plano, periódico na direção axial. Este resultado representa uma melhoria em relação ao estado da arte, devido a Ettinger e Titi, que é a boa-colocação no caso de domínio limitado e com vorticidade inicial limitada / Abstract: In this work we study the concept of weak solution of the incompressible ideal flow equations. More precisely, we study examples that highlight the shortcomings of the definition of weak solution for the Euler equations. An example is Shnirelman's flow, which is a weak solution of the Euler equations, on the bidimensional torus, compactly supported in time. This implies that weak solutions of the Euler equations are not unique. In this work we construct a numerical approximation of Shnirelman's flow, in order to visualize the structure of the flow. In joint work with Shnirelman, we modified the original construction in order to obtain a flow with more interesting physical structure whereby the visualization of the inverse energy cascade is clearer. Recently, De Lellis and Székelyhidi also constructed weak solutions of the Euler equations, in the whole space, with compact support in time and space. The technique used by them is innovative and has proved to be very effective in the construction of several counter-examples. We used the technique developed by De Lellis and Székelyhidi in order to construct weak solutions of the 2D Euler equations, coupled with a passive tracer, which are compactly supported in time and space. Finally, in our work we also studied the Euler equations with helical symmetry; we proved global existence, in time, of weak solutions, in the absence of helical swirl, provided that the initial vorticity lies in Lp, with p > 4=3, and has compact support in the plane, periodic in the axial direction. This result represents an improvement with respect to the state of art, due to Ettinger and Titi, who established the well-posedness, for bounded helical domains, assuming that the initial vorticity is bounded / Doutorado / Matematica / Doutor em Matemática
|
8 |
Unicidade de soluções fracas das equações de Navier-Stokes para fluidos compressiveis / Uniqueness of weak solutions of the Navier-Stokes equations of compressible flowEntringer, Ariane Piovezan, 1984- 06 May 2009 (has links)
Orientador: Marcelo Martins dos Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T14:33:51Z (GMT). No. of bitstreams: 1
Entringer_ArianePiovezan_M.pdf: 25485247 bytes, checksum: 0f3ef257e85aae26b1d7bbc1ef29bcc2 (MD5)
Previous issue date: 2009 / Resumo: Este trabalho consiste de uma exposição detalhada do resultado provado no artigo Uniqueness of Weak Solutions of the Navier-Stokes Equations of Multidimensional, Compressible Flow de D. Hoff (SIAM J. Math. Anal - 2006) sobre a unicidade de solução fraca e a dependência contínua da solução fraca nos dados iniciais para as equações de Navier-Stokes para fluídos compressíveis...Observação: O resumo, na integra, podera ser visualizado no texto completo da tese digital / Abstract: Uniqueness of Weak Solutions of the Navier-Stokes Equations of Multidimensional, Compressible Flow of D. Hoff (SIAM J. Math. Anal - 2006) about uniqueness and continuous dependence on initial data of weak solutions of the Navier-Stokes equations of compressible flow...Note: The complete abstract is available with the full electronic digital thesis or dissertations / Mestrado / Mestre em Matemática
|
9 |
Existencia e unicidade de solução fraca global das equações de Navier-Stokes em uma dimensão para fluidos isentropicos compressiveis com a viscosidade dependente da densidade / On global weak solutions to ID compressible isentropic Navier-Stokes equações with density-dependent viscosityTeixeira, Edson José, 1984- 14 August 2018 (has links)
Orientador: Marcelo Martins dos Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatística e Computação Científica / Made available in DSpace on 2018-08-14T14:51:49Z (GMT). No. of bitstreams: 1
Teixeira_EdsonJose_M.pdf: 638751 bytes, checksum: 1d26a9bbc1ee3ba6c4ee45e29c14c45e (MD5)
Previous issue date: 2009 / Resumo: Este trabalho consiste de uma exposição detalhada do resultado provado no artigo "Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity" de S. Jiang, Z. P. Xin e P. Zhang (Methods Appl. Anal. - 2005), sobre a existência e unicidade de solução fraca para o sistema de Navier-Stokes unidimensional de um fluido isentrópico compressível com viscosidade dependente da densidade e com fronteira livre em coordenadas lagrangianas, ?t +?2ux = 0 0 < x < 1, t > 0 ut + (P(?))x = (?µ (?)ux)x 0 < x < 1, t > 0 onde ?, u; P(?) e µ(?) são a densidade, velocidade, pressão e viscosidade do fluido, e exigiremos que este fluido satisfaça a condição de fronteira (-P(?) + (?µ(?)ux)= 0. Trataremos do caso particular onde consideramos P(?) = A ?? e µ( ?) = B?a; onde A, B > 0,? > 1 e 0 < a < 1 são constantes. Acrescentaremos uma condicão inicial (?0,u0). / Abstract: The present work makes a well-detailed exposition about the main results given in the paper "Global weak solutions to 1D compressible isentropic Navier-Stokes equations with densitydependent viscosity" by S. Jiang, Z. P. Xin and P. Zhang (Methods Appl. Anal. - 2005). The problem in this paper has a free boundary but in lagrangian coordinates the equations are the following, ?t +?2ux = 0 0 < x < 1, t > 0 ut + (P(?))x = (?µ (?)ux)x 0 < x < 1, t > 0 and the boundary becomes the fixed points x = 0 and x = 1; Here ?, u; P(?) and µ(?) are, respectively, the density, velocity, pressure and the viscosity of the fluid. The boundary condition, at x = 0 and x = 1, is given by (-P(?) + (?µ(?)ux)= 0. Although the pressure and viscosity may have more general forms, to be more specific, the authors consider only the special case P(?) = A ?? e µ( ?) = B?a, with A; B > 0,? > 1 and 0 <a< 1 being constants. An initial condition (?0,u0) is also given at time t = 0. / Mestrado / Analise, Equações Diferenciais Parciais / Mestre em Matemática
|
10 |
The formation of the cerebrospinal fluid: a case study of the cerebrospinal fluid systemFaleye, Sunday 10 1900 (has links)
It was generally accepted that the rate of formation of cerebrospinal °uid
(CSF) is independent of intraventricular pressure [26], until A. Sahar and
a host of other scientists challenged this belief. A. Sahar substantiated his
belief that the rate of (CSF) formation actually depends on intraventricular
pressure, see A. Sahar, 1971 [26].
In this work we show that CSF formation depends on some other factors,
including the intraventricular pressure. For the purpose of this study, we
used the capillary blood °ow model proposed by K.Boryczko et. al., [5] in
which blood °ow in the microvessels was modeled as a two-phase °ow; the
solid and the liquid volume phase.
CSF is formed from the blood plasma [23] which we assume to be in the
liquid volume phase. CSF is a Newtonian °uid [2, 23].
The principles and methods of e®ective area" developed by N. Sauer and
R. Maritz [21] for studying the penetration of °uid into permeable walls was
used to investigate the ¯ltrate momentum °ux from the intracranial capillary
wall through the pia mater and epithelial layer of the choroid plexus into the
subarachnoid space. We coupled the dynamic boundary equation with the
Navier-Stoke's constitutive equation for incompressible °uid, representing the
°uid °ow in the liquid volume phase in the capillary to arrive at our model. / Mathematical sciences / M.Sc.
|
Page generated in 0.0957 seconds