Return to search

Broadband emission from organic-inorganic metal halides using luminescent organic A site ions

Organic-inorganic metal halides represent a versatile platform for optoelectronic applications such as solar cells, LEDs, and photodetectors due to their tunable structures and properties. The ability to achieve broadband white-light emission through exciton self-trapping, tunable by controlling dimensionality with organic-metal halide combinations, makes them particularly exciting for light emission applications. This study explores a 1D cadmium halide hybrid system with the luminescent A-site ion, 1,2-bis(pyridine)butane, to achieve broadband white light emission. Further, this study investigates halide replacement effects, structural distortions, and dopant influences on the emission characteristics to achieve enhanced performance. Additionally, the synthesis and characterization of Mn and Sb-based metal halides using the same luminescent A-site ion are discussed to highlight their potential for advancing optoelectronic applications. Finally, this study demonstrates the importance of the space charge limited current (SCLC) method in studying the charge carrier density and mobilities using 1D copper halides.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-7310
Date13 August 2024
CreatorsRahman, Mohammad Anikur
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0019 seconds