Wireless channel characterization is important for determining both the requirements for a wireless system and its resulting reliability. Wireless systems are becoming ever more pervasive and thus are expected to operate in increasingly more cluttered environments. While these devices may be fixed in location, the channel is still far from ideal due to multipath. Under such conditions, it is desirable to have a means of taking wireless channel measurements in a low-cost and distributed manner, which is not always possible using typical channel measurement equipment.
This thesis leverages a software-defined radio (SDR) platform to perform wideband wireless channel measurements. Specifically, the system can measure the scalar frequency response of a wireless channel in a distributed manner and provides measurements with an average mean-squared error of 0.018 % σ and a median error not exceeding 0.631 dB when compared to measurements taken with a vector network analyzer. This accuracy holds true in a highly multipath environment, with a measurement range of ~40 dB. The system is also capable of scaling to multiple wireless links which will be measured simultaneously (up to three links are demonstrated). After validating the measurement system, a measurement campaign is undertook using the system in a highly multipath environment to demonstrate a possible application of the system.
Identifer | oai:union.ndltd.org:uvm.edu/oai:scholarworks.uvm.edu:graddis-1969 |
Date | 01 January 2018 |
Creators | Jamison, James |
Publisher | ScholarWorks @ UVM |
Source Sets | University of Vermont |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate College Dissertations and Theses |
Page generated in 0.0023 seconds