Return to search

Spectrally efficient Non-Orthogonal Multiple Access (NOMA) techniques for future generation mobile systems

With the expectation of over a 1000-fold increase in the number of connected devices by 2020, efficient utilization of the limited bandwidth has become ever more important in the design of mobile wireless systems. Furthermore, the ever-increasing demand for higher data rates has made it necessary for a new waveform design that satisfies not only throughput demands, but network capacity as well. One such technique recently proposed is the non-orthogonal multiple access (NOMA) which utilizes the distance-dependent power domain multiplexing, based on the principles of signal superposition. In this thesis, new spectrally efficient non-orthogonal signal techniques are proposed. The goal of the schemes is to allow simultaneous utilization of the same time frequency network resources. This is achieved by designing component signals in both power and phase domain such that users are precoded or preformed to form a single and uniquely decodable composite signal. The design criteria are based on maximizing either the sum rate or spectral efficiency, minimizing multi-user interference and detection ambiguity, and maximizing the minimum Euclidean distance between the composite constellation points. The design principles are applied in uplink, downlink and coordinated multipoint (CoMP) scenarios. We assume ideal channel state with perfect estimation, low mobility and synchronization scenarios so as to prove the concept and serve as a bound for any future work in non-ideal conditions. Extensive simulations and numerical analysis are carried to show the superiority and compatibility of the schemes. First, a new NOMA signal design called uplink NOMA with constellation precoding is proposed. The precoding weights are generated at the eNB based on the number of users to be superposed. The eNB signals the precoding weights to be employed by the users to adjust their transmission. The adjustments utilize the channel state information estimated from common periodic pilots broadcasted by the eNB. The weights ensure the composite received signal at the eNB belongs to the pre-known constellation. Furthermore, the users precode to the eNB antenna that requires the least total transmit power from all the users. At the eNB, joint maximum likelihood (JML) detection is employed to recover the component signals. As the composite constellation is as that of a single user transmitting that same constellation, multiple access interference can be viewed as absent, which allows multiple users to transmit at their full rates. Furthermore, the power gain achieved by the sum of the component signals maximizes the sum rate. Secondly, the constellation design principle is employed in the downlink scenario. In the scheme, called downlink NOMA with constellation preforming, the eNB preforms the users signal with power and phase weights prior to transmission. The preforming ensures multi-user interference is eliminated and the spectral efficiency maximized. The preformed composite constellation is broadcasted by the eNB which is received by all users. Subsequently, the users perform JML detection with the designed constellation to extract their individual component signals. Furthermore, improved signal reliability is achieved in transmit and receive diversity scenarios in the schemes called distributed transmit and receive diversity combining, respectively. Thirdly, the constellation preforming on the downlink is extended to MIMO spatial multiplexing scenarios. The first MIMO scheme, called downlink NOMA with constellation preforming, each eNB antenna transmits a preformed composite signal composed of a set of multiple users' streams. This achieves spatial multiplexing with diversity with less transmit antennas, reducing costs associated with multiple RF chains, while still maximizing the sum rate. In the second MIMO scheme, a highly spectrally efficient MIMO preforming scheme is proposed. The scheme, called group layer MIMO with constellation preforming, the eNB preforms to a specific group of users on each transmit antenna. In all the schemes, the users perform JML detection to recover their signals. Finally, the adaptability of the constellation design is shown in CoMP. The scheme, called CoMP with joint constellation processing, the additional degrees of freedom, in form of interfering eNBs, are utilized to enable spatial multiplexing to a user with a single receive antenna. This is achieved by precoding each stream from the coordinating eNB with weights signalled by a central eNB. Consequently, the inter-cell interference is eliminated and the sum-rate maximized. To reduce the total power spent on precoding, an active cell selection scheme is proposed where the precoding is employed on the highest interferers to the user. Furthermore, a power control scheme is applied the design principle, where the objective is to reduce cross-layer interference by adapting the transmission power to the mean channel gain.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:731209
Date January 2017
CreatorsBukar, Ibrahim
PublisherUniversity of Sussex
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://sro.sussex.ac.uk/id/eprint/71053/

Page generated in 0.036 seconds