Embedding small wireless sensors into the environment allows for monitoring physical processes with high spatio-temporal resolutions. Today, these devices are equipped with a battery to supply them with power. Despite technological advances, the high maintenance cost and environmental impact of batteries prevent the widespread adoption of wireless sensors. Battery-free devices that store energy harvested from light, vibrations, and other ambient sources in a capacitor promise to overcome the drawbacks of (rechargeable) batteries, such as bulkiness, wear-out and toxicity. Because of low energy input and low storage capacity, battery-free devices operate intermittently; they are forced to remain inactive for most of the time charging their capacitor before being able to operate for a short time. While it is known how to deal with intermittency on a single device, the coordination and communication among groups of multiple battery-free devices remain largely unexplored. For the first time, the present thesis addresses this problem by proposing new methods and tools to investigate and overcome several fundamental challenges.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:82197 |
Date | 15 November 2022 |
Creators | Geißdörfer, Kai |
Contributors | Zimmerling, Marco, Kumar, Akash, Merret, Geoff, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds