The main contributions of this thesis are located in the domain of wireless sensor netorks. More in detail, we introduce energyaware
algorithms and protocols in the context of the following topics: self-synchronized duty-cycling in networks with energy
harvesting capabilities, distributed graph coloring and minimum energy broadcasting with realistic antennas. In the following, we
review the research conducted in each case.
We propose a self-synchronized duty-cycling mechanism for sensor networks. This mechanism is based on the working and resting
phases of natural ant colonies, which show self-synchronized activity phases. The main goal of duty-cycling methods is to save
energy by efficiently alternating between different states. In the case at hand, we considered two different states: the sleep state,
where communications are not possible and energy consumption is low; and the active state, where communication result in a
higher energy consumption.
In order to test the model, we conducted an extensive experimentation with synchronous simulations on mobile networks and static
networks, and also considering asynchronous networks. Later, we extended this work by assuming a broader point of view and
including a comprehensive study of the parameters. In addition, thanks to a collaboration with the Technical University of
Braunschweig, we were able to test our algorithm in the real sensor network simulator Shawn (http://shawn.sf.net).
The second part of this thesis is devoted to the desynchronization of wireless sensor nodes and its application to the distributed
graph coloring problem. In particular, our research is inspired by the calling behavior of Japanese tree frogs, whose males use their
calls to attract females. Interestingly, as female frogs are only able to correctly localize the male frogs when their calls are not too
close in time, groups of males that are located nearby each other desynchronize their calls.
Based on a model of this behavior from the literature, we propose a novel algorithm with applications to the field of sensor
networks. More in detail, we analyzed the ability of the algorithm to desynchronize neighboring nodes. Furthermore, we considered
extensions of the original model, hereby improving its desynchronization capabilities.To illustrate the potential benefits of
desynchronized networks, we then focused on distributed graph coloring. Later, we analyzed the algorithm more extensively and
show its performance on a larger set of benchmark instances.
The classical minimum energy broadcast (MEB) problem in wireless ad hoc networks, which is well-studied in the scientific
literature, considers an antenna model that allows the adjustment of the transmission power to any desired real value from zero up
to the maximum transmission power level. However, when specifically considering sensor networks, a look at the currently
available hardware shows that this antenna model is not very realistic. In this work we re-formulate the MEB problem for an
antenna model that is realistic for sensor networks. In this antenna model transmission power levels are chosen from a finite set of
possible ones. A further contribution concerns the adaptation of an ant colony optimization algorithm --currently being the state of
the art for the classical MEB problem-- to the more realistic problem version, the so-called minimum energy broadcast problem with
realistic antennas (MEBRA). The obtained results show that the advantage of ant colony optimization over classical heuristics even
grows when the number of possible transmission power levels decreases. Finally we build a distributed version of the algorithm,
which also compares quite favorably against centralized heuristics from the literature. / Las principles contribuciones de esta tesis se encuentran en el domino de las redes de sensores inalámbricas. Más en detalle, introducimos algoritmos y protocolos que intentan minimizar el consumo energético para los siguientes problemas: gestión autosincronizada de encendido y apagado de sensores con capacidad para obtener energía del ambiente, coloreado de grafos distribuido y broadcasting de consumo mínimo en entornos con antenas reales.
En primer lugar, proponemos un sistema capaz de autosincronizar los ciclos de encendido y apagado de los nodos de una red de sensores. El mecanismo está basado en las fases de trabajo y reposo de las colonias de hormigas tal y como estas pueden observarse en la naturaleza, es decir, con fases de actividad autosincronizadas. El principal objectivo de este tipo de técnicas es ahorrar energía gracias a alternar estados de forma eficiente. En este caso en concreto, consideramos dos estados diferentes: el estado dormido, en el que los nodos no pueden comunicarse y el consumo energético es bajo; y el estado activo, en el que las comunicaciones propician un consumo energético elevado.
Con el objetivo de probar el modelo, se ha llevado a cabo una extensa experimentación que incluye tanto simulaciones síncronas en redes móviles y estáticas, como simulaciones en redes asíncronas. Además, este trabajo se extendió asumiendo un punto de vista más amplio e incluyendo un detallado estudio de los parámetros del algoritmo. Finalmente, gracias a la colaboración con la Technical University of Braunschweig, tuvimos la oportunidad de probar el mecanismo en el simulador realista de redes de sensores, Shawn (http://shawn.sf.net).
La segunda parte de esta tesis está dedicada a la desincronización de nodos en redes de sensores y a su aplicación al problema del coloreado de grafos de forma distribuida. En particular, nuestra investigación está inspirada por el canto de las ranas de árbol japonesas, cuyos machos utilizan su canto para atraer a las hembras. Resulta interesante que debido a que las hembras solo son capaces de localizar las ranas macho cuando sus cantos no están demasiado cerca en el tiempo, los grupos de machos que se hallan en una misma región desincronizan sus cantos.
Basado en un modelo de este comportamiento que se encuentra en la literatura, proponemos un nuevo algoritmo con aplicaciones al campo de las redes de sensores. Más en detalle, analizamos la habilidad del algoritmo para desincronizar nodos vecinos. Además, consideramos extensiones del modelo original, mejorando su capacidad de desincronización. Para ilustrar los potenciales beneficios de las redes desincronizadas, nos centramos en el problema del coloreado de grafos distribuido que tiene relación con diferentes tareas habituales en redes de sensores.
El clásico problema del broadcasting de consumo mínimo en redes ad hoc ha sido bien estudiado en la literatura. El problema considera un modelo de antena que permite transmitir a cualquier potencia elegida (hasta un máximo establecido por el dispositivo). Sin embargo, cuando se trabaja de forma específica con redes de sensores, un vistazo al hardware actualmente disponible muestra que este modelo de antena no es demasiado realista. En este trabajo reformulamos el problema para el modelo de antena más habitual en redes de sensores. En este modelo, los niveles de potencia de transmisión se eligen de un conjunto finito de posibilidades. La siguiente contribución consiste en en la adaptación de un algoritmo de optimización por colonias de hormigas a la versión más realista del problema, también conocida como broadcasting de consumo mínimo con antenas realistas.
Los resultados obtenidos muestran que la ventaja de este método sobre heurísticas clásicas incluso crece cuando el número de posibles potencias de transmisión decrece. Además, se ha presentado una versión distribuida del algoritmo, que también se compara de forma bastante favorable contra las heurísticas centralizadas conocidas.
Identifer | oai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/81861 |
Date | 11 June 2012 |
Creators | Hernández Pibernat, Hugo |
Contributors | Blum, Christian, Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics |
Publisher | Universitat Politècnica de Catalunya |
Source Sets | Universitat Politècnica de Catalunya |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | 232 p., application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | info:eu-repo/semantics/openAccess, L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/ |
Page generated in 0.0031 seconds