Let R be a connective ring spectrum and let M be an R-bimodule. In this paper
we prove several results that relate the K-theory of R⋉M and T[superscript M, subscript R] to a “topological Witt vectors” construction W(R; M), where R ⋉ M is the square-zero extension of R by M and T [superscript M, subscript R] is the tensor algebra on M. Our main results include a desciption
of the Taylor tower of K(R ⋉ (−)) and the derived functor of K̃(TR(−)) on the category
of R-bimodules in terms of the Taylor tower of W(R;−). W(R;−) has an easily described Taylor tower, given explicitly by Lindenstrauss and McCarthy in [17]. Our main results serve as generalizations of the results for discrete rings in [17, 18] and also extend the computations by Hesselholt and Madsen [15] showing that π₀(TR(R; p)) is isomorphic to the p-typical Witt vectors over R when R a commutative ring. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/28423 |
Date | 10 February 2015 |
Creators | Pancia, Matthew |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0017 seconds