• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Goodwillie tower of free augmented algebras over connective ring spectra

Pancia, Matthew 10 February 2015 (has links)
Let R be a connective ring spectrum and let M be an R-bimodule. In this paper we prove several results that relate the K-theory of R⋉M and T[superscript M, subscript R] to a “topological Witt vectors” construction W(R; M), where R ⋉ M is the square-zero extension of R by M and T [superscript M, subscript R] is the tensor algebra on M. Our main results include a desciption of the Taylor tower of K(R ⋉ (−)) and the derived functor of K̃(TR(−)) on the category of R-bimodules in terms of the Taylor tower of W(R;−). W(R;−) has an easily described Taylor tower, given explicitly by Lindenstrauss and McCarthy in [17]. Our main results serve as generalizations of the results for discrete rings in [17, 18] and also extend the computations by Hesselholt and Madsen [15] showing that π₀(TR(R; p)) is isomorphic to the p-typical Witt vectors over R when R a commutative ring. / text
2

Classification of plethories in characteristic zero

Carlson, Magnus January 2015 (has links)
We classify plethories over fields of characteristic zero, thus answering a question of Borger-Wieland and Bergman-Hausknecht. All plethories over characteristic zero fields are linear, in the sense that they are free plethories on a bialgebra. For the proof we need some facts from the theory of ring schemes where we extend previously known results. We also classify plethories with trivial Verschiebung over a perfect field of non-zero characteristic and indicate future work. / <p>QC 20151117</p>
3

Teoremas de decomposição, degenerescência e anulamento em característica positiva / Decomposition, degeneration and vanishing theorems in positive characteristic

Cardoso, Nuno Filipe de Andrade, 1988- 25 August 2018 (has links)
Orientador: Marcos Benevenuto Jardim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T16:48:31Z (GMT). No. of bitstreams: 1 Cardoso_NunoFilipedeAndrade_M.pdf: 1858794 bytes, checksum: bbe47182338feb3de60b480df87b52a7 (MD5) Previous issue date: 2014 / Resumo: Os teoremas de degenerescência de Hodge e de anulamento de Kodaira, Akizuki e Nakano são de suma importância na teoria de variedades complexas. Usando o teorema de comparação de Serre, ambos podem ser traduzidos para o contexto de esquemas projetivos e suaves sobre um corpo de característica zero. Para corpos de característica positiva, no entanto, os dois deixam de valer sem hipóteses adicionais, sendo que os primeiros contra-exemplos foram encontrados por Mumford e Raynaud. O objetivo desta dissertação é apresentar um teorema devido a Deligne e Illusie que assegura a degenerescência da seqüência espectral de Hodge-de Rham e uma versão do teorema de Kodaira, Akizuki e Nakano para certos esquemas projetivos e suaves sobre um corpo perfeito de característica positiva. Nos propusemos a dar um tratamento, na medida do possível, auto-suficiente / Abstract: The Hodge degeneration theorem and the Kodaira, Akizuki and Nakano's vanishing theorem are of paramount importance in the theory of complex manifolds. Using Serre's comparison theorem, both can be translated to the context of smooth projective schemes over a field of characteristic zero. For fields of positive characteristic, however, both fail to hold without additional hypothesis, and the first counterexamples were found by Mumford and Raynaud. Our goal in this dissertation is to present a theorem due to Deligne and Illusie that ensures the degeneration of the Hodge-de Rham spectral sequence and a version of the theorem of Kodaira, Akizuki and Nakano for certain smooth projective schemes over a perfect field of positive characteristic. We tried to keep the treatment as self-contained as possible / Mestrado / Matematica / Mestre em Matemática
4

Construction of algebraic curves with many rational points over finite fields / Construction of algebraic curves with many rational points over finite fields

Ducet, Virgile 23 September 2013 (has links)
L'étude du nombre de points rationnels d'une courbe définie sur un corps fini se divise naturellement en deux cas : lorsque le genre est petit (typiquement g<=50), et lorsqu'il tend vers l'infini. Nous consacrons une partie de cette thèse à chacun de ces cas. Dans la première partie de notre étude nous expliquons comment calculer l'équation de n'importe quel revêtement abélien d'une courbe définie sur un corps fini. Nous utilisons pour cela la théorie explicite du corps de classe fournie par les extensions de Kummer et d'Artin-Schreier-Witt. Nous détaillons également un algorithme pour la recherche de bonnes courbes, dont l'implémentation fournit de nouveaux records de nombre de points sur les corps finis d'ordres 2 et 3. Nous étudions dans la seconde partie une formule de trace d'opérateurs de Hecke sur des formes modulaires quaternioniques, et montrons que les courbes de Shimura associées forment naturellement des suites récursives de courbes asymptotiquement optimales sur une extension quadratique du corps de base. Nous prouvons également qu'alors la contribution essentielle en points rationnels est fournie par les points supersinguliers. / The study of the number of rational points of a curve defined over a finite field naturally falls into two cases: when the genus is small (typically g<=50), and when it tends to infinity. We devote one part of this thesis to each of these cases. In the first part of our study, we explain how to compute the equation of any abelian covering of a curve defined over a finite field. For this we use explicit class field theory provided by Kummer and Artin-Schreier-Witt extensions. We also detail an algorithm for the search of good curves, whose implementation provides new records of number of points over the finite fields of order 2 and 3. In the second part, we study a trace formula of Hecke operators on quaternionic modular forms, and we show that the associated Shimura curves of the form naturally form recursive sequences of asymptotically optimal curves over a quadratic extension of the base field. Moreover, we then prove that the essential contribution to the rational points is provided by supersingular points.

Page generated in 0.069 seconds