• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surfaces abéliennes à multiplication quaternionique et points rationnels de quotients d'Atkin-Lehner de courbes de Shimura

Gillibert, Florence 02 December 2011 (has links)
Dans cette thèse nous étudions deux problèmes. Le premier est la non-existence de pointsrationnels non spéciaux sur des quotients d’Atkin-Lehner de courbes de Shimura. Le se-cond est l’absence de surfaces abéliennes rationnelles à multiplication potentiellementquaternioniques munies d’une structure de niveau. Ces deux problèmes sont liés car unesurface abélienne rationnelle simple à multiplication potentiellement quaternionique cor-respond à un point rationnel non spécial sur un certain quotient d’Atkin-Lehner de courbede Shimura.Dans une première partie nous expliquons comment vérifier un critère de Parent etYafaev en grande généralité pour prouver que dans les conditions du cas non ramifié deOgg, et si p est assez grand par rapport à q, alors le quotient X^pq/w_q n’a pas de pointrationnel non spécial.Dans une seconde partie nous déterminons une borne effective pour les structures deniveaux possibles pour une surface abélienne rationnelle acquérant sur un corps quadra-tique imaginaire fixé multiplication par un ordre fixé dans une algèbre de quaternions. / In this thesis we study two problems. The first one is the non-existence of rational non-special points on Atkin-Lehner quotients of Shimura curves. The second one is the absence of rational abelian surfaces with potential quaternionique multiplication endowed with a level structure. These two problems are linked because a simple rational abelian surface with potential quaternionique multiplication is associated to a rational non-special point on an Atkin-Lehner quotients of Shimura curve. In a first part of our work we explain how to verify in wide generality a criterium of Parent and Yafaev in order to prove that in the conditions of Ogg's non ramified case, and if $p$ is big enough compared two $q$, then the quotient $X^{pq}/w_q$ has no non-special rational point. In a second part we determine an effective born for possible level structures on rational abelian surfaces having, over a fixed quadratic field, multiplication by a fixed order in a quaternion algebra
2

Construction of algebraic curves with many rational points over finite fields / Construction of algebraic curves with many rational points over finite fields

Ducet, Virgile 23 September 2013 (has links)
L'étude du nombre de points rationnels d'une courbe définie sur un corps fini se divise naturellement en deux cas : lorsque le genre est petit (typiquement g<=50), et lorsqu'il tend vers l'infini. Nous consacrons une partie de cette thèse à chacun de ces cas. Dans la première partie de notre étude nous expliquons comment calculer l'équation de n'importe quel revêtement abélien d'une courbe définie sur un corps fini. Nous utilisons pour cela la théorie explicite du corps de classe fournie par les extensions de Kummer et d'Artin-Schreier-Witt. Nous détaillons également un algorithme pour la recherche de bonnes courbes, dont l'implémentation fournit de nouveaux records de nombre de points sur les corps finis d'ordres 2 et 3. Nous étudions dans la seconde partie une formule de trace d'opérateurs de Hecke sur des formes modulaires quaternioniques, et montrons que les courbes de Shimura associées forment naturellement des suites récursives de courbes asymptotiquement optimales sur une extension quadratique du corps de base. Nous prouvons également qu'alors la contribution essentielle en points rationnels est fournie par les points supersinguliers. / The study of the number of rational points of a curve defined over a finite field naturally falls into two cases: when the genus is small (typically g<=50), and when it tends to infinity. We devote one part of this thesis to each of these cases. In the first part of our study, we explain how to compute the equation of any abelian covering of a curve defined over a finite field. For this we use explicit class field theory provided by Kummer and Artin-Schreier-Witt extensions. We also detail an algorithm for the search of good curves, whose implementation provides new records of number of points over the finite fields of order 2 and 3. In the second part, we study a trace formula of Hecke operators on quaternionic modular forms, and we show that the associated Shimura curves of the form naturally form recursive sequences of asymptotically optimal curves over a quadratic extension of the base field. Moreover, we then prove that the essential contribution to the rational points is provided by supersingular points.

Page generated in 0.0456 seconds