Databases are very complex systems that require database system administrators to perform system tuning in order to achieve optimal performance. Memory tuning is vital to the performance of a database system because when the database workload exceeds its memory capacity, the results of the queries running on a system are delayed and can cause substantial user dissatisfaction. In order to solve this problem, this thesis presents a platform modeled after a closed control feedback loop to control the level of multi-query processing. Utilizing this platform provides two key assets. First, the system identification is acquired, which is one of two crucial steps involved in developing a closed feedback loop. Second, the platform provides a means to experimentally study database tuning problem and verify the effectiveness of research ideas related to database performance.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-2582 |
Date | 25 March 2010 |
Creators | Burrell, Tiffany |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0129 seconds