<p>Real-time systems do not only require that the logical operations are correct. Equally important is that the specified time constraints always are complied. This has successfully been studied before for mono-processor systems. However, as the hardware in the systems gets more complex, the previous approaches become invalidated. For example, multi-processor systems-on-chip (MPSoC) get more and more common every day, and together with a shared memory, the bus access time is unpredictable in nature. This has recently been resolved, but a safe and not too pessimistic cache analysis approach for MPSoC has not been investigated before. This thesis has resulted in designed and implemented algorithms for cache analysis on real-time MPSoC with a shared communication infrastructure. An additional advantage is that the algorithms include improvements compared to previous approaches for mono-processor systems. The verification of these algorithms has been performed with the help of data flow analysis theory. Furthermore, it is not known how different types of cache miss characteristic of a task influence the worst case execution time on MPSoC. Therefore, a program that generates randomized tasks, according to different parameters, has been constructed. The parameters can, for example, influence the complexity of the control flow graph and average distance between the cache misses.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-15393 |
Date | January 2008 |
Creators | Neikter, Carl-Fredrik |
Publisher | Linköping University, Department of Computer and Information Science |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0017 seconds