• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 36
  • 13
  • 13
  • 6
  • 5
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 265
  • 265
  • 265
  • 86
  • 49
  • 44
  • 43
  • 42
  • 39
  • 39
  • 32
  • 31
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

A constrained computational model for flexible scheduling

McElhone, Charles Gerard January 1996 (has links)
No description available.

Computational architecture : a step towards predictable software design

Vickers, Andrew J. January 1994 (has links)
No description available.

Correctness and communication in real-time systems

Schneider, Steve A. January 1989 (has links)
No description available.

Petri nets approach for the analysis of MASCOT interprocess communications

Jiffry, Mustafa Abdulrahman January 2000 (has links)
No description available.

Scheduling Algorithms for Real-Time Systems

MOHAMMADI, AREZOU 24 April 2009 (has links)
Real-time systems are those whose correctness depends not only on logical results of computations, but also on the time at which the results are produced. This thesis provides a formal definition for real-time systems and includes the following original contributions on real-time scheduling algorithms. The first topic studied in the thesis is minimizing the total penalty to be paid in scheduling a set of soft real-time tasks. The problem is NP-hard. We prove the properties of any optimal scheduling algorithm. We also derive a number of heuristic algorithms which satisfy the properties obtained. Moreover, we obtain a tight upper bound for the optimal solution to the problem. Numerical results that compare the upper bound with the optimal solution and the heuristic algorithms are provided. In the second part of this thesis, we study the problem of minimizing the number of processors required for scheduling a set of periodic preemptive independent hard real-time tasks. We use a partitioning strategy with an EDF scheduling algorithm on each processor. The problem is NP-hard. We derive lower and upper bounds for the number of processors required to satisfy the constraints of the problem. We also compare a number of heuristic algorithms with each other and with the bounds derived in this research. Numerical results demonstrate that our lower bound is very tight. In the third part of the thesis, we study the problem of uplink scheduling in telecommunication systems with two dimensional resources. Our goal is to maximize the total value of the packets sent in uplink subframe such that system constraints and requirements are satisfied. The packets have various QoS requirements and have either soft or hard deadlines. We take two approaches, namely 0-1 and fractional approaches, to model the problem. Considering the properties of the application, we derive globally optimal solutions in polynomial time for the models. We also present a method to fine-tune the models. Numerical results are provided to compare the performance of the various optimal algorithms each corresponding to a model. / Thesis (Ph.D, Computing) -- Queen's University, 2009-04-24 08:22:04.238

Uniting formal and structured methods for the development of reliable software

Shi, Lihua January 1998 (has links)
No description available.

Integrative framework for discrete systems simulation and monitoring

Peytchev, Evtim Todorov January 1999 (has links)
No description available.

Real-Time Embedded Software Modeling and Synthesis using Polychronous Data Flow Languages

Kracht, Matthew Wallace 01 April 2014 (has links)
As embedded software and platforms become more complicated, many safety properties are left to simulation and testing. MRICDF is a formal polychronous language used to guarantee certain safety properties and alleviate the burden of software development and testing. We propose real-time extensions to MRICDF so that temporal properties of embedded systems can also be proven. We adapt the extended precedence encoding technique of Prelude and expand upon current schedulability analysis techniques for multi-periodic real-time systems. / Master of Science

Parallelizing Trusted Execution Environments for Multicore Hard Real-Time Systems

Mishra, Tanmaya 05 June 2019 (has links)
Real-Time systems are defined not only by their logical correctness but also timeliness. Modern real-time systems, such as those controlling industrial plants or the flight controller on UAVs, are no longer isolated. The same computing resources are shared with a variety of other systems and software. Further, these systems are increasingly being connected and made available over the internet with the rise of Internet of Things and the need for automation. Many real-time systems contain sensitive code and data, which not only need to be kept confidential but also need protection against unauthorized access and modification. With the cheap availability of hardware supported Trusted Execution Environments (TEE) in modern day microprocessors, securing sensitive information has become easier and more robust. However, when applied to real-time systems, the overheads of using TEEs make scheduling untenable. However, this issue can be mitigated by judiciously utilizing TEEs and capturing TEE operation peculiarities to create better scheduling policies. This thesis provides a new task model and scheduling approach, Split-TEE task model and a scheduling approach ST-EDF. It also presents simulation results for 2 previously proposed approaches to scheduling TEEs, T-EDF and CT-RM. / Master of Science / Real-Time systems are computing systems that not only maintain the traditional purpose of any computer, i.e, to be logically correct, but also timeliness, i.e, guaranteeing an output in a given amount of time. While, traditionally, real-time systems were isolated to reduce interference which could affect the timeliness, modern real-time systems are being increasingly connected to the internet. Many real-time systems, especially those used for critical applications like industrial control or military equipment, contain sensitive code or data that must not be divulged to a third party or open to modification. In such cases, it is necessary to use methods to safeguard this information, regardless of the extra processing time/resource consumption (overheads) that it may add to the system. Modern hardware support Trusted Execution Environments (TEEs), a cheap, easy and robust mechanism to secure arbitrary pieces of code and data. To effectively use TEEs in a real-time system, the scheduling policy which decides which task to run at a given time instant, must be made aware of TEEs and must be modified to take as much advantage of TEE execution while mitigating the effect of its overheads on the timeliness guarantees of the system. This thesis presents an approach to schedule TEE augmented code and simulation results of two previously proposed approaches.

Execution Time Control : A hardware accelerated Ada implementation with novel support for interrupt handling

Gregertsen, Kristoffer Nyborg January 2012 (has links)
Execution time control is a technique that allows execution time budgets to be set and overruns to be handled dynamically to prevent deadline misses. This removes the need for the worst-case execution time (WCET) of tasks to be found by offline timing analysis – a problem that can be very hard to solve for modern computer architectures. Execution time control can also increase the processor utilization, as the WCET will often be much higher than the average execution time. This thesis describes how the GNU Ada Compiler and a bare-board Ravenscar run-time environment were ported to the Atmel AVR32 UC3 microcontroller series making the Ada programming language available on this architecture for the first time, and an implementation of Ada execution time control for this system that supports full execution time control for interrupt handling. Usage patterns for this brand new feature are demonstrated in Ada by extending the object-oriented real-time framework with execution time servers for interrupt handling, allowing the system to be protected against unexpected bursts of interrupts that could otherwise result in deadline misses. Separate execution time measurement for interrupt handling also improves the accuracy of measurement for tasks. As a direct result of the work presented in this thesis separate execution time measurement for interrupts will be included in the forthcoming ISO-standard for Ada 2012. While the implementation of execution time control is for the Ada programming language and the UC3 microcontroller series, the design and implementation should be portable to other architectures, and the principles of execution time control for interrupt handling applicable to other programming languages. Low run-time overhead is important for execution time control to be useful for real-time systems. Therefore a hardware Time Management Unit (TMU) was designed to reduce the overhead of execution time control. This design has been implemented for the UC3 and performance tests with the developed run-time environment shows that it gives a significant reduction of overhead. The memory-mapped design of the TMU also allows it to be implemented on other architectures.

Page generated in 0.2249 seconds