• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 36
  • 13
  • 13
  • 6
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 274
  • 274
  • 274
  • 87
  • 50
  • 46
  • 44
  • 44
  • 42
  • 41
  • 33
  • 31
  • 29
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Integration of enhanced slot-shifting in uc/os-II

RAMACHANDRAN, GOWRI SANKAR January 2011 (has links)
No description available.
42

Probabilistic Analysis of Low-Criticality Execution

Küttler, Martin, Roitzsch, Michael, Hamann, Claude-Joachim, Völp, Marcus 16 March 2018 (has links) (PDF)
The mixed-criticality toolbox promises system architects a powerful framework for consolidating real-time tasks with different safety properties on a single computing platform. Thanks to the research efforts in the mixed-criticality field, guarantees provided to the highest criticality level are well understood. However, lower-criticality job execution depends on the condition that all high-criticality jobs complete within their more optimistic low-criticality execution time bounds. Otherwise, no guarantees are made. In this paper, we add to the mixed-criticality toolbox by providing a probabilistic analysis method for low-criticality tasks. While deterministic models reduce task behavior to constant numbers, probabilistic analysis captures varying runtime behavior. We introduce a novel algorithmic approach for probabilistic timing analysis, which we call symbolic scheduling. For restricted task sets, we also present an analytical solution. We use this method to calculate per-job success probabilities for low-criticality tasks, in order to quantify, how low-criticality tasks behave in case of high-criticality jobs overrunning their optimistic low-criticality reservation.
43

Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations

El-Shambakey, Mohammed Talat 02 October 2013 (has links)
Lock-based concurrency control suffers from programmability, scalability, and composability challenges. These challenges are exacerbated in emerging multicore architectures, on which improved software performance must be achieved by exposing greater concurrency. Transactional memory (TM) is an emerging alternative synchronization model for shared memory objects that promises to alleviate these difficulties. In this dissertation, we consider software transactional memory (STM) for concurrency control in multicore real-time software, and present a suite of real-time STM contention managers for resolving transactional conflicts. The contention managers are called ECM, RCM, LCM, PNF, and FBLT. RCM and ECM resolve conflicts using fixed and dynamic priorities of real-time tasks, respectively, and are naturally intended to be used with the fixed priority (e.g., G-RMA) and dynamic priority (e.g., G-EDF) multicore real-time schedulers, respectively. LCM resolves conflicts based on task priorities as well as atomic section lengths, and can be used with G-EDF or G-RMA schedulers. Transactions under ECM, RCM, and LCM may retry due to conflicts with higher priority tasks even when there are no shared objects, i.e., transitive retry. PNF avoids transitive retry and optimizes processor usage by lowering the priority of retrying transactions, thereby enabling other non-conflicting transactions to proceed. PNF, however, requires a priori knowledge of all requested objects for each atomic section, which is inconsistent with the semantics of dynamic STM. Moreover, its centralized design increases overhead. FBLT avoids transitive retry, do not require a priori knowledge of requested objects, and has a decentralized design. We establish upper bounds on transactional retry costs and task response times under the contention managers through schedulability analysis. Since ECM and RCM preserve the semantics of the underlying real-time scheduler, their maximum transactional retry cost is double the maximum atomic section length. This is improved in the design of LCM, which achieves shorter retry costs and tighter upper bounds. As PNF avoids transitive retry and improves processor usage, it yields shorter retry costs and tighter upper bounds than ECM, RCM, and LCM. FBLT\'s upper bounds are similarly tight because it combines the advantages of PNF and LCM. We formally compare the proposed contention managers with each other, with lock-free synchronization, and with multiprocessor real-time locking protocols. Our analysis reveals that, for most cases, ECM, RCM, and LCM achieve higher schedulability than lock-free synchronization only when the atomic section length does not exceed half of lock-free synchronization\'s retry loop length. With equal periods and greater access times for shared objects, atomic section length under ECM, RCM, and LCM can be much larger than the retry loop length while still achieving better schedulability. With proper values for LCM\'s design parameters, atomic section length can be larger than the retry loop length for better schedulability. Under PNF, atomic section length can exceed lock-free\'s retry loop length and still achieve better schedulability in certain cases. FBLT achieves equal or better schedulability than lock-free with appropriate values for design parameters. The schedulability advantage of the contention managers over multiprocessor real-time locking protocols such as Global OMLP and RNLP depends upon the value of $s_{max}/L_{max}$, the ratio of the maximum transaction length to the maximum critical section length. FBLT\'s schedulability is equal or better than Global OMLP and RNLP if $s_/L_ le 2$. Checkpointing enables partial roll-back of transactions by recording transaction execution states (i.e., checkpoints) during execution, allowing roll-back to a previous checkpoint instead of transaction start, improving task response time. We extend FBLT with checkpointing and develop CP-FBLT, and identify the conditions under which CP-FBLT achieves equal or better schedulability than FBLT. We implement the contention managers in the Rochester STM framework and conduct experimental studies using a multicore real-time Linux kernel. Our studies reveal that among the contention managers, CP-FBLT has the best average-case performance. CP-FBLT\'s higher performance is due to the fact that PNF\'s and LCM\'s advantages are combined into the design of FBLT, which is the base of CP-FBLT. Moreover, checkpointing improves task response time. The contention managers were also found to have equal or better average-case performance than lock-free synchronization: more jobs meet their deadlines using CP-FBLT, FBLT, and PNF than lock-free synchronization by 34.6%, 28.5%, and 32.4% (on average), respectively. The superiority of the contention managers is directly due to their better conflict resolution policies. Locking protocols such as OMLP and RNLP were found to perform better: more jobs meet their deadlines under OMLP and RNLP than any contention manager by 12.4% and 13.7% (on average), respectively. However, the proposed contention managers have numerous qualitative advantages over locking protocols. Locks do not compose, whereas STM transactions do. To allow multiple objects to be accessed in a critical section, OMLP assigns objects to non-conflicting groups, where each group is protected by a distinct lock. RNLP assumes that objects are accessed in a specific order to prevent deadlocks. In contrast, STM allows multiple objects to be accessed in a transaction in any order, while guaranteeing deadlock-freedom, which significantly increases programmability. Moreover, STM offers platform independence: the proposed contention managers can be entirely implemented in the user-space as a library. In contrast, real-time locking protocols such as OMLP and RNLP must be supported by the underlying platform (i.e., operating system or virtual machine). / Ph. D.
44

Improving Soft Real-time Performance of Fog Computing

Struhar, Vaclav January 2021 (has links)
Fog computing is a distributed computing paradigm that brings data processing from remote cloud data centers into the vicinity of the edge of the network. The computation is performed closer to the source of the data, and thus it decreases the time unpredictability of cloud computing that stems from (i) the computation in shared multi-tenant remote data centers, and (ii) long distance data transfers between the source of the data and the data centers. The computation in fog computing provides fast response times and enables latency sensitive applications. However, industrial systems require time-bounded response times, also denoted as RT. The correctness of such systems depends not only on the logical results of the computations but also on the physical time instant at which these results are produced. Time-bounded responses in fog computing are attributed to two main aspects: computation and communication.    In this thesis, we explore both aspects targeting soft RT applications in fog computing in which the usefulness of the produced computational results degrades with real-time requirements violations. With regards to the computation, we provide a systematic literature survey on a novel lightweight RT container-based virtualization that ensures spatial and temporal isolation of co-located applications. Subsequently, we utilize a mechanism enabling RT container-based virtualization and propose a solution for orchestrating RT containers in a distributed environment. Concerning the communication aspect, we propose a solution for a dynamic bandwidth distribution in virtualized networks.
45

Garbage Collection Scheduling for Utility Accrual Real-Time Systems

Feizabadi, Shahrooz Shojania 06 April 2007 (has links)
Utility Accrual (UA) scheduling is a method of dynamic real-time scheduling that is designed to respond to overload conditions by producing a feasible schedule that heuristically maximizes a pre-defined metric of utility. Whereas utility accrual schedulers have traditionally focused on CPU overload, this dissertation explores memory overload conditions during which the aggregate memory demand exceeds a system's available memory bandwidth. Real-time systems are typically implemented in C or other languages that use explicit dynamic memory management. Taking advantage of modern type-safe languages, such as Java, necessitates the use of garbage collection (GC). The timeliness requirements of real-time systems, however, impose specific demands on the garbage collector. Garbage collection introduces a significant source of unpredictability in the execution timeline of a task because it unexpectedly interjects pauses of arbitrary length, at arbitrary points in time, with an arbitrary frequency. To construct a feasible schedule, a real-time scheduler must have the ability to predict the collector's activities and plan for them accordingly. We have devised CADUS (Collector-Aware Dynamic Utility Scheduler), a utility accrual algorithm that tightly links CPU scheduling with the memory requirements -and the corresponding garbage collection activities - of real-time tasks. By constructing and storing memory time allocation profiles, we address the problem of GC activation strategy. We estimate GC latency by using a real-time collector and modeling its behavior. We project GC frequency by planning, at schedule construction time, the memory bandwidth available to the collector. CADUS can point the collector's activities to any specific task in the system. The runtime system provides this ability by maintaining separate logical heaps for all tasks. We demonstrate the viability of CADUS through extensive simulation studies. We evaluated the behavior of CADUS under a wide range of CPU and memory load conditions and utility distributions. We compared its performance against an existing GC-unaware UA scheduler and found that CADUS consistently outperformed its GC-unaware counterpart. We investigated and identified the reasons for the superior performance of CADUS and quantified our results. Most significantly, we found that in an overloaded dynamic soft real-time system, a scheduler's preemption decisions have a highly significant impact on GC latency. A dynamic real-time scheduler therefore must predict the impact of its preemption decisions on GC latency in order to construct time-feasible schedules. / Ph. D.
46

TIME-PREDICTABLE FAST MEMORIES: CACHES VS. SCRATCHPAD MEMORIES

Liu, Yu 01 August 2011 (has links)
In modern processor architectures, caches are widely used to shorten the gap between the processor speed and memory access time. However, caches are time unpredictable, especially the shared L2 cache used by different cores on multicore processors. Thus, it can significantly increase the complexity of worst-case execution time (WCET) analysis, which is crucial for real-time systems. This dissertation designs several time-predictable scratchpad memory (SPM) based architectures for both VLIW (Very Long InstructionWord) based single-core and multicore processors. First, this dissertation proposes a time predictable two-level SPM based architecture for VLIW based single-core processors, and an ILP (Integer Linear Programming) based static memory objects allocation algorithm is extended to support the multi-level SPMs without harming the time predictability of SPMs. Second, several SPM based architectures for VLIW based multicore processors are designed. To support these architectures, the dynamic memory objects allocation based partition, the static memory objects allocation based partition and the static memory objects allocation based priority L2 SPM strategy are proposed, which retain the characteristic of time predictability. Also, both the WCET and worst-case energy consumption (WCEC) of our SPM based single-core and multicore architectures are completely evaluated in this dissertation. Last, to exploit the load/store latencies that are statically known in this architecture, we study a SPM-aware scheduling method to improve the performance. Our experimental results indicate the strengths and weaknesses of each proposed architecture and allocation method, which offers interesting memory design options to enable real-time computing. The strength of the two-level architecture is its superior performance compared to the one-level architecture, while the strength of the one-level architecture is its simple implementation. Also, the two-level architecture with separated L1 SPM for each core better fits for the data-intensive real-time applications, which not only retains good performance but also achieves a higher bandwidth by accessing both instruction and data SPM at the same time. Compared to the static based strategies, the dynamic allocation based partition L2 SPM strategy offers the better performance on each core because of the reuse of SPM space at the run-time, but has much higher complexity. In addition, the experimental results show that the timing and energy performance of our proposed SPM based architectures are superior to the similar cache based and hybrid architectures. Meanwhile, our architectures can ensure time predictability which is desirable for the real-time systems.
47

The design and construction of the Reactive Systems Laboratory

Acciai, Guy Francis 22 October 2009 (has links)
<p>Distributed real-time systems are notoriously difficult to correctly design and construct [Pam as 1985]. The fundamental principles of concurrency, deadline driven scheduling, and reaction to external stimuli which underlie such systems are inherently complex. This difficulty is further exacerbated when applications based on these principles are distributed over a network. Academic instruction in this domain is challenging: while theoretical issues can be taught with traditional "pencil and paper" techniques, real-time programming skills require experience that can be best provided by a laboratory. To this end, the Computer Science Department at Virginia Tech created and built a laboratory, known as the Reactive Systems Laboratory (RSL), specifically designed to provide these practical experiences. This paper documents the decisions, designs, and equipment used to build this laboratory. Additionally, the low-level software systems required to operate the RSL are discussed. Finally, future directions for the laboratory are considered and some conclusions are drawn based on usage to-date.</p> / Master of Science
48

Power-Performance-Predictability: Managing the Three Cornerstones of Resource Constrained Real-Time System Design

Mukherjee, Anway 08 November 2019 (has links)
This dissertation explores several challenges that plague the hardware-software co-design of popular resource constrained real-time embedded systems. We specifically tackle existing real-world problems, and address them through our design solutions which are highly scalable, and have practical feasibility as verified through our solution implementation on real-world hardware. We address the problem of poor battery life in mobile embedded devices caused due to side-by-side execution of multiple applications in split-screen mode. Existing industry solutions either restricts the number of applications that can run simultaneously, limit their functionality, and/or increase the hardware capacity of the battery associated with the system. We exploit the gap in research on performance and power trade-off in smartphones to propose an integrated energy management solution, that judiciously minimizes the system-wide energy consumption with negligible effect on its quality of service (QoS). Another important real-world requirement in today's interconnected world is the need for security. In the domain of real-time computing, it is not only necessary to secure the system but also maintain its timeliness. Some example security mechanisms that may be used in a hard real-time system include, but are not limited to, security keys, protection of intellectual property (IP) of firmware and application software, one time password (OTP) for software certification on-the-fly, and authenticated computational off-loading. Existing design solutions require expensive, custom-built hardware with long time-to-market or time-to-deployment cycle. A readily available alternative is the use of trusted execution environment (TEE) on commercial off-the-shelf (COTS) embedded processors. However, utilizing TEE creates multiple challenges from a real-time perspective, which includes additional time overhead resulting in possible deadline misses. Second, trusted execution may adversely affect the deterministic execution of the system, as tasks running inside a TEE may need to communicate with other tasks that are executing on the native real-time operating system. We propose three different solutions to address the need for a new task model that can capture the complex relationship between performance and predictability for real-time tasks that require secure execution inside TEE. We also present novel task assignment and scheduling frameworks for real-time trusted execution on COTS processors to improve task set schedulability. We extensively assess the pros and cons of our proposed approaches in comparison to the state-of-the-art techniques in custom-built real-world hardware for feasibility, and simulated environments to test our solutions' scalability. / Doctor of Philosophy / Today's real-world problems demand real-time solutions. These solutions need to be practically feasible, and scale well with increasing end user demands. They also need to maintain a balance between system performance and predictability, while achieving minimum energy consumption. A recent example of technological design problem involves ways to improve the battery lifetime of mobile embedded devices, for example, smartphones, while still achieving the required performance objectives. For instance, smartphones that run Android OS has the capability to run multiple applications concurrently using a newly introduced split-screen mode of execution, where applications can run side-by-side at the same time on screen while using the same shared resources (e.g., CPU, memory bandwidth, peripheral devices etc.). While this can improve the overall performance of the system, it can also lead to increased energy consumption, thereby directly affecting the battery life. Another technological design problem involves ways to protect confidential proprietary information from being siphoned out of devices by external attackers. Let us consider a surveillance unmanned aerial vehicle (UAV) as an example. The UAV must perform sensitive tasks, such as obtaining coordinates of interest for surveillance, within a given time duration, also known as task deadline. However, an attacker may learn how the UAV communicates with ground control, and take control of the UAV, along with the sensitive information it carries. Therefore, it is crucial to protect such sensitive information from access by an unauthorized party, while maintaining the system's task deadlines. In this dissertation, we explore these two real-world design problems in depth, observe the challenges associated with them, while presenting several solutions to tackle the issues. We extensively assess the pros and cons of our proposed approaches in comparison to the state-of- the-art techniques in custom-built real-world hardware, and simulated environments to test our solutions' scalability.
49

Predictable Connected Traffic Infrastructure

Oza, Pratham Rajan 03 May 2022 (has links)
While increasing number of vehicles on urban roadways create uncontrolled congestion, connectivity among vehicles, traffic lights and other road-side units provide abundant data that paves avenues for novel smart traffic control mechanisms to mitigate traffic congestion and delays. However, increasingly complex vehicular applications have outpaced the computational capabilities of on-board processing units, therefore requiring novel offloading schemes onto additional resources located by the road-side. Adding connectivity and other computational resources on legacy traffic infrastructure may also introduce security vulnerabilities. To ensure that the timeliness and resource constraints of the vehicles using the roadways as well as the applications being deployed on the traffic infrastructure are met, the transportation systems needs to be more predictable. This dissertation discusses three areas that focus on improving the predictability and performance of the connected traffic infrastructure. Firstly, a holistic traffic control strategy is presented that ensures predictable traffic flow by minimizing traffic delays, accounting for unexpected traffic conditions and ensuring timely emergency vehicle traversal through an urban road network. Secondly, a vehicular edge resource management strategy is discussed that incorporates connected traffic lights data to meet timeliness requirements of the vehicular applications. Finally, security vulnerabilities in existing traffic controllers are studied and countermeasures are provided to ensure predictable traffic flow while thwarting attacks on the traffic infrastructure. / Doctor of Philosophy / Exponentially increasing vehicles especially in urban areas create pollution, delays and uncontrolled traffic congestion. However, improved traffic infrastructure brings connectivity among the vehicles, traffic lights, road-side detectors and other equipment, which can be leveraged to design new and advanced traffic control techniques. The initial work in this dissertation provides a traffic control technique that (i) reduces traffic wait times for the vehicles in urban areas, (ii) ensures safe and quick movements of emergency vehicles even through crowded areas, and (iii) ensures that the traffic keeps moving even under unexpected lane closures or roadblocks. As technology advances, connected vehicles are becoming increasingly automated. This allows the car manufacturers to design novel in-vehicle features where the passengers can now stream media-rich content, play augmented reality (AR)-based games and/or get high definition information about the surroundings on their car's display, while the car is driven through the urban traffic. This is made possible by providing additional computing resources along the road-side that the vehicles can utilize wirelessly to ensure passenger's comfort and improved experience of in-vehicle features. In this dissertation, a technique is provided to manage the computational resources which will allow vehicles (and its passengers) to use multiple features simultaneously. As the traffic infrastructure becomes increasingly inter-connected, it also allows malicious actors to exploit vulnerabilities such as modifying traffic lights, interfering with road-side sensors, etc. This can lead to increased traffic wait times and eventually bring down the traffic network. In the final work, one such vulnerability in traffic infrastructure is studied and mitigating measures are provided so that the traffic keeps moving even when an attack is detected. In all, this dissertation aims to improve safety, security and overall experience of the drivers, passengers and the pedestrians using the connected traffic infrastructure.
50

Defending Real-Time Systems through Timing-Aware Designs

Mishra, Tanmaya 04 May 2022 (has links)
Real-time computing systems are those that are designed to achieve computing goals by certain deadlines. Real-time computing systems are present in everything from cars to airplanes, pacemakers to industrial-control systems, and other pieces of critical infrastructure. With the increasing interconnectivity of these systems, system security issues and the constant threat of manipulation by malicious external attackers that have plagued general computing systems, now threaten the integrity and safety of real-time systems. This dissertation discusses three different defense techniques that focuses on the role that real-time scheduling theory can play to reduce runtime cost, and guarantee correctness when applying these defense strategies to real-time systems. The first work introduces a novel timing aware defense strategy for the CAN bus that utilizes TrustZone on state-of-the-art ARMv8-M microcontrollers. The second reduces the runtime cost of control-flow integrity (CFI), a popular system security defense technique, by correctly modeling when a real-time system performs I/O, and exploiting the model to schedule CFI procedures efficiently. Finally, the third studies and provides a lightweight mitigation strategy for a recently discovered vulnerability within mixed criticality real-time systems. / Doctor of Philosophy / Real-time computing systems are those that are designed to achieve computing goals within certain timing constraints. Real-time computing systems are present in everything from cars to airplanes, pacemakers to industrial-control systems, and other pieces of critical infrastructure. With the increasing interconnectivity of these systems, system security issues and the constant threat of manipulation by malicious external attackers that have plagued general computing systems, now threaten the integrity and safety of real-time systems. This dissertation discusses three different defense techniques that focuses on the role that real-time scheduling theory can play to reduce runtime cost, and guarantee correctness when applying these defense strategies to real-time systems. The first work introduces a novel timing aware defense strategy for the Controller Area Network (CAN). CAN is a popular communication system that is at the heart of every modern passenger vehicle and is indispensable for the safe operation of various components such as the engine and transmission systems, and due to its simplicity, may be vulnerable to a variety of attacks. We leverage security advancements in modern processor design to provide a lightweight and predictable (in terms of time taken to perform the operation) defense technique for some of these vulnerabilities. The second work applies a technique called Control-Flow Integrity (CFI) to real-time systems. CFI is a general-purpose defense technique to prevent attackers from modifying software execution, and applying such techniques to real-time systems, particularly those with limited hardware capabilities, may be infeasible. By applying real-time scheduling theory, we propose a strategy to apply CFI to such systems, while reducing its overhead, or cost, without compromising the security guarantees CFI inherently provides. Finally, safety-critical systems may consist of a mix of operations, each having a different level of importance (criticality) with respect to the safe operation of the system. However, due to the complexity of modeling such systems, the models themselves may be vulnerable to attacks. Through simulations we study one such vulnerability and propose a modification to mitigate it.

Page generated in 0.0614 seconds