• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 11
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The design and construction of the Reactive Systems Laboratory

Acciai, Guy Francis 22 October 2009 (has links)
<p>Distributed real-time systems are notoriously difficult to correctly design and construct [Pam as 1985]. The fundamental principles of concurrency, deadline driven scheduling, and reaction to external stimuli which underlie such systems are inherently complex. This difficulty is further exacerbated when applications based on these principles are distributed over a network. Academic instruction in this domain is challenging: while theoretical issues can be taught with traditional "pencil and paper" techniques, real-time programming skills require experience that can be best provided by a laboratory. To this end, the Computer Science Department at Virginia Tech created and built a laboratory, known as the Reactive Systems Laboratory (RSL), specifically designed to provide these practical experiences. This paper documents the decisions, designs, and equipment used to build this laboratory. Additionally, the low-level software systems required to operate the RSL are discussed. Finally, future directions for the laboratory are considered and some conclusions are drawn based on usage to-date.</p> / Master of Science
2

A quantitative comparison & evaluation of prominent marshalling/un-marshalling formats in distributed real-time & embedded systems

Satyanarayana, Geetha R. 11 July 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis demonstrates a novel idea on how components in a distributed real-time & embedded (DRE) system can choose from different data interchange formats at run-time. It also quantitatively evaluates three binary data interchange protocols used in distributed real-time & embedded (DRE) systems: the Common Data Representation (CDR), which collects data "as-is" into a buffer; Binary JSON (BSON), which enables "on the fly" discovery of elements in a message; and FIX Adapted for Streaming (FAST), which is a binary compression algorithm popularly used for data exchange in financial stock market domain. We compare these three data exchange formats to determine if it is possible to minimize the data usage without compromising CPU processing times, data throughput, and data latency. The lack of such a study has made protocols such as CDR popular based on the assumption that collecting data "as-is" will consume less processing time and send with high throughput. We perform the study in the context of an Open Source Architecture for Software Instrumentation of Systems (OASIS). To perform our study, we modified its existing data interchange framework to flexibly and seamlessly integrate either format, and let the components choose a format at run-time. The experiments from our study shows that as data size increases, the throughput of CDR, BSON, and FAST decreases by 96.16%, 97.23%, and 84.41%, respectively. The increase in packaging and un-packaging times are 1985.12% and 1642.28% for FAST, compared to 3158.96% and 2312.50% for CDR, and 5077.98% and 3686.48% for BSON.
3

Testing Distributed Real-time Systems With A Distributed Test Approach

Oztas, Gokhan 01 May 2008 (has links) (PDF)
Software testing is an important phase the of software development cycle which reveals faults and ensures correctness of the developed software. Distributed real-time systems are mostly safety critical systems for which the correctness and quality of the software is much more significant. However, majority of the current testing techniques have been developed for sequential (non real-time) software and there is a limited amount of research on testing distributed real-time systems. In this thesis, a proposed approach in the academic literature testing distributed real-time systems using a distributed test architecture is implemented and compared to existing software testing practices in a software development company on a case study. Evaluation of the results show the benefits of using the considered distributed test approach on distributed real-time systems in terms of software correctness.
4

Reliability for Hard Real-time Communication in Packet-switched Networks

Ganjalizadeh, Milad January 2014 (has links)
Nowadays, different companies use Ethernet for different industrial applications. Industrial Ethernet has some specific requirements due to its specific applications and environmental conditions which is the reason that makes it different than corporate LANs. Real-time guarantees, which require precise synchronization between all communication devices, as well as reliability are the keys in performance evaluation of different methods [1].  High bandwidth, high availability, reduced cost, support for open infrastructure as well as deterministic architecture make packet-switched networks suitable for a variety of different industrial distributed hard real-time applications. Although research on guaranteeing timing requirements in packet-switched networks has been done, communication reliability is still an open problem for hard real-time applications. In this thesis report, a framework for enhancing the reliability in multihop packet-switched networks is presented. Moreover, a novel admission control mechanism using a real-time analysis is suggested to provide deadline guarantees for hard real-time traffic. A generic and flexible simulator has been implemented for the purpose of this research study to measure different defined performance metrics. This simulator can also be used for future research due to its flexibility. The performance evaluation of the proposed solution shows a possible enhancement of the message error rate by several orders of magnitude, while the decrease in network utilization stays at a reasonable level.
5

Certification of real-time performance for dynamic, distributed real-time systems

Huh, Eui-Nam January 2002 (has links)
No description available.
6

Heuristic Algorithms for Adaptive Resource Management of Periodic Tasks in Soft Real-Time Distributed Systems

Devarasetty, Ravi Kiran 14 February 2001 (has links)
Dynamic real-time distributed systems are characterized by significant run-time uncertainties at the mission and system levels. Typically, processing and communication latencies in such systems do not have known upper bounds and event and task arrivals and failure occurrences are non-deterministically distributed. This thesis proposes adaptive resource management heuristic techniques for periodic tasks in dynamic real-time distributed systems with the (soft real-time) objective of minimizing missed deadline ratios. The proposed resource management techniques continuously monitor the application tasks at run-time for adherence to the desired real-time requirements, detects timing failures or trends for impending failures (due to workload fluctuations), and dynamically allocate resources by replicating subtasks of application tasks for load sharing. We present "predictive" resource allocation algorithms that determine the number of subtask replicas that are required for adapting the application to a given workload situation using statistical regression theory. The algorithms use regression equations that forecast subtask timeliness as a function of external load parameters such as number of sensor reports and internal resource load parameters such as CPU utilization. The regression equations are determined off-line and on-line from application profiles that are collected off-line and on-line, respectively. To evaluate the performance of the predictive algorithms, we consider algorithms that determine the number of subtask replicas using empirically determined functions. The empirical functions compute the number of replicas as a function of the rate of change in the application workload during a "window" of past task periods. We implemented the resource management algorithms as part of a middleware infrastructure and measured the performance of the algorithms using a real-time benchmark. The experimental results indicate that the predictive, regression theory-based algorithms generally produce lower missed deadline ratios than the empirical strategies under the workload conditions that were studied. / Master of Science
7

Supervision of distributed systems using constrained unfoldings of timed models

Grabiec, Bartosz 04 October 2011 (has links) (PDF)
This work is devoted to the issue of monitoring of distributed real-time systems. In particular, it focuses on formal aspects of model-based supervision and problems which are related to it. In its first part, we present the basic properties of two well-known formal models used to model distributed systems: networks of timed automata and time Petri nets. We show that the behavior of these models can be represented with so-called branching processes. We also introduce the key conceptual elements of the supervisory system. The second part of the work is dedicated to the issue of constrained unfoldings which enable us to track causal relationships between events in a distributed system. This type of structure can be used to reproduce processes of the system on the basis of a completely unordered set of previously observed events. Moreover, we show that time constraints imposed on a system and observations submitted to the supervisory system can significantly affect a course of events in the system. We also raise the issue of parameters in time constraints. The proposed methods are illustrated with case studies. The third part of the work deals with the issue of unobservable cyclical behaviors in distributed systems. This type of behaviors leads to an infinite number of events in constrained unfoldings. We explain how we can obtain a finite structure that stores information about all observed events in the system, even if this involves processes that are infinite due to such unobservable loops. The fourth and final part of the work is dedicated to implementation issues of the previously described methods.
8

Study of concurrency in real-time distributed systems

Balaguer, Sandie 13 December 2012 (has links) (PDF)
This thesis is concerned with the modeling and the analysis of distributedreal-time systems. In distributed systems, components evolve partlyindependently: concurrent actions may be performed in any order, withoutinfluencing each other and the state reached after these actions does notdepends on the order of execution. The time constraints in distributed real-timesystems create complex dependencies between the components and the events thatoccur. So far, distributed real-time systems have not been deeply studied, andin particular the distributed aspect of these systems is often left aside. Thisthesis explores distributed real-time systems. Our work on distributed real-timesystems is based on two formalisms: time Petri nets and networks of timedautomata, and is divided into two parts.In the first part, we highlight the differences between centralized anddistributed timed systems. We compare the main formalisms and their extensions,with a novel approach that focuses on the preservation of concurrency. Inparticular, we show how to translate a time Petri net into a network of timedautomata with the same distributed behavior. We then study a concurrency relatedproblem: shared clocks in networks of timed automata can be problematic when oneconsiders the implementation of a model on a multi-core architecture. We showhow to avoid shared clocks while preserving the distributed behavior, when thisis possible.In the second part, we focus on formalizing the dependencies between events inpartial order representations of the executions of Petri nets and time Petrinets. Occurrence nets is one of these partial order representations, and theirstructure directly provides the causality, conflict and concurrency relationsbetween events. However, we show that, even in the untimed case, some logicaldependencies between event occurrences are not directly described by thesestructural relations. After having formalized these logical dependencies, wesolve the following synthesis problem: from a formula that describes a set ofruns, we build an associated occurrence net. Then we study the logicalrelations in a simplified timed setting and show that time creates complexdependencies between event occurrences. These dependencies can be used to definea canonical unfolding, for this particular timed setting.
9

Supervision of distributed systems using constrained unfoldings of timed models / Supervision de systèmes répartis utilisant des dépliages avec contraintes de modèles temporisés

Grabiec, Bartosz 04 October 2011 (has links)
Ce travail est consacré à la problématique du suivi des systèmes répartis temps réel. Plus précisément, il se concentre sur les aspects formels de la supervision basée sur des modèles ainsi que sur les problèmes qui lui sont liés. Dans la première partie du travail, nous présentons les propriétés de base de deux modèles formels bien connus utilisés pour la modélisation de systèmes répartis : les réseaux d'automates temporisés et les réseaux de Petri temporels. Nous montrons que le comportement de ces modèles peut être représenté par les procédés dits de branchement. Nous introduisons également les éléments conceptuels clés du système de surveillance. La deuxième partie du travail est consacrée à la question des dépliages avec contraintes qui permettent le suivi des relations causales entre les événements dans un système réparti. Ce type de structure peut reproduire des processus sur la base d'un ensemble totalement non-ordonné d'évènements. Dans notre travail, nous soulevons les problèmes des contraintes de temps et de leurs paramétrages. Les méthodes proposées sont illustrées par des études de cas. La troisième partie du travail traite de la problématique des boucles inobservables qui peuvent résulter de comportements cycliques inobservables des systèmes considérés. Ce type de comportement conduit à un nombre infini d'événements dans les dépliages avec contraintes. La quatrième et dernière partie du travail est consacrée à l'implémentation des méthodes décrites précédemment. / This work is devoted to the issue of monitoring of distributed real-time systems. In particular, it focuses on formal aspects of model-based supervision and problems which are related to it. In its first part, we present the basic properties of two well-known formal models used to model distributed systems: networks of timed automata and time Petri nets. We show that the behavior of these models can be represented with so-called branching processes. We also introduce the key conceptual elements of the supervisory system. The second part of the work is dedicated to the issue of constrained unfoldings which enable us to track causal relationships between events in a distributed system. This type of structure can be used to reproduce processes of the system on the basis of a completely unordered set of previously observed events. Moreover, we show that time constraints imposed on a system and observations submitted to the supervisory system can significantly affect a course of events in the system. We also raise the issue of parameters in time constraints. The proposed methods are illustrated with case studies. The third part of the work deals with the issue of unobservable cyclical behaviors in distributed systems. This type of behaviors leads to an infinite number of events in constrained unfoldings. We explain how we can obtain a finite structure that stores information about all observed events in the system, even if this involves processes that are infinite due to such unobservable loops. The fourth and final part of the work is dedicated to implementation issues of the previously described methods.
10

Techniques d'analyse et d'optimisation pour la synthèse architecturale de systèmes temps réel embarqués distribués : problèmes de placement, de partitionnement et d'ordonnancement / Analysis and optimization techniques for the architectural synthesis of real time embedded and distributed systems

Mehiaoui, Asma 16 June 2014 (has links)
Dans le cadre industriel et académique, les méthodologies de développement logiciel exploitent de plus en plus le concept de “modèle” afin d’appréhender la complexité des systèmes temps réel critiques. En particulier, celles-ci définissent une étape dans laquelle un modèle fonctionnel, conçu comme un graphe de blocs fonctionnels communiquant via des échanges de signaux de données, est déployé sur un modèle de plateforme d’exécution matérielle et un modèle de plateforme d’exécution logicielle composé de tâches et de messages. Cette étape appelée étape de déploiement, permet d’établir une architecture opérationnelle du système nécessitant une validation des propriétés temporelles du système. Dans le contexte des systèmes temps réel dirigés par les évènements, la vérification des propriétés temporelles est réalisée à l’aide de l’analyse d’ordonnançabilité basée sur l’analyse des temps de réponse. Chaque choix de déploiement effectué a un impact essentiel sur la validité et la qualité du système. Néanmoins, les méthodologies existantes n’offrent pas de support permettant de guider le concepteur d’applications durant l’exploration de l’espace des architectures possibles. L’objectif de ces travaux de thèse consiste à mettre en place des techniques d’analyse et de synthèse automatiques permettant de guider le concepteur vers une architecture opérationnelle valide et optimisée par rapport aux performances du système. Notre proposition est dédiée à l’exploration de l’espace des architectures en tenant compte à la fois des quatre degrés de liberté déterminés durant la phase de déploiement, à savoir (j) le placement des éléments fonctionnels sur les éléments de calcul et de communication de la plateforme d’exécution, (ii) le partitionnement des éléments fonctionnels en tâches temps réel et des signaux de données en messages, (iii) l’affectation de priorités d’exécution aux tâches et aux messages du système et (iv) l’attribution du mécanisme de protection des données partagées pour les systèmes temps réel périodiques. Nous nous intéressons principalement à la satisfaction des contraintes temporelles et celles liées aux capacités des ressources de la plateforme cible. De plus, nous considérons l’optimisation des latences de bout-en-bout et la consommation mémoire. Les approches d’exploration architecturale présentées dans cette thèse sont basées sur la technique d’optimisation PLNE (programmation linéaire en nombres entiers) et concernent à la fois les applications activées périodiquement et celles dont l’activation est pilotée par les données. Contrairement à de nombreuses approches antérieures fournissant une solution partielle au problème de déploiement, les méthodes proposées considèrent l’ensemble du problème de déploiement. Les approches proposées dans cette thèse sont évaluées à l’aide d’applications génériques et industrielles. / Modern development methodologies from the industry and the academia exploit more and more the ”model” concept to address the complexity of critical real-time systems. These methodologies define a key stage in which the functional model, designed as a network of function blocks communicating through exchanged data signals, is deployed onto a hardware execution platform model and implemented in a software model consisting of a set of tasks and messages. This stage so-called deployment stage allows establishment of an operational architecture of the system, thus it requires evaluation and validation of the temporal properties of the system. In the context of event-driven real-time systems, the verification of temporal properties is performed using the schedulability analysis based on the response time analysis. Each deployment choice has an essential impact on the validity and the quality of the system. However, the existing methodologies do not provide supportto guide the designer of applications in the exploration of the operational architectures space. The objective of this thesis is to develop techniques for analysis and automatic synthesis of a valid operational architecture optimized with respect to the system performances. Our proposition is dedicated to the exploration of architectures space considering at the same time the four degrees of freedom determined during the deployment phase, (i) the placement of functional elements on the computing and communication resources of the execution platform, (ii) the partitioning of function elements into real time tasks and data signals into messages, (iii) the priority assignment to system tasks and messages and (iv) the assignment of shared data protection mechanism for periodic real-time systems. We are mainly interested in meeting temporal constraints and memory capacity of the target platform. In addition, we are focusing on the optimization of end-to-end latency and memory consumption. The design space exploration approaches presented in this thesis are based on the MILP (Mixed Integer Linear programming) optimization technique and concern at the same time time-driven and data-driven applications. Unlike many earlier approaches providing a partial solution to the deployment problem, our methods consider the whole deployment problem. The proposed approaches in this thesis are evaluated using both synthetic and industrial applications.

Page generated in 0.1173 seconds