Pour optimiser les structures des aéronefs, il est maintenant nécessaire de concevoir le matériau au « juste-besoin », de façon à diminuer le ratio masse/performances. Par une bonne gestion du procédé de fabrication et un choix judicieux des matériaux constitutifs, les composites à renfort tissé et à matrice organique ont ce potentiel. Mais pour l’exploiter pleinement, de nouvelles approches adaptées à ce type de matériau doivent être développées. Pour cela, une chaîne de calcul multimodèle est proposée, permettant de prévoir les propriétés mécaniques élastiques saines ou endommagées du matériau à partir de ses paramètres de conception. Cette chaîne est établie à l’échelle mésoscopique, pour pouvoir prendre en compte la géométrie du renfort. Une procédure spéciale de création de maillages de cellules mésoscopiques de composites tissés a été développée, de façon à faire le lien entre la déformée du renfort après mise en forme, obtenue par simulation EF, et les autres modèles de la chaîne (injection de résine, cuisson du composite, comportement mécanique). Le bon fonctionnement de l’approche est montré par l’étude de deux cas-tests, un renfort de quatre plis de taffetas et un renfort de quatre plis de satin de 5, chacun compactés à différents niveaux et selon plusieurs configurations d’imbrication de plis. Enfin, pour anticiper la validation de la chaîne de modélisation, une étude expérimentale comparative entre plusieurs composites tissés compactés à différentes épaisseurs a été menée. Ce travail se place dans le cadre de la construction future d’une chaîne multiéchelle plus globale qui, parcourue dans le sens inverse, permettra de concevoir le matériau sur-mesure en fonction des performances structurales locales désirées. / In order to optimize aeronautic structures, the manufacturing process must be tailored to the structural needs, with the aim of reducing the density/performance ratio. Polymer composites with woven reinforcements offer a large flexibility due to a vast choice of constituent materials and manufacturing process parameters. However, to entirely exploit their potential, new design methods specifically adapted to this type of material have to be developed. For this purpose, a modeling chain is proposed, which is able to predict the elastic properties of the intact or damaged material, by incorporating the manufacturing process parameters. The chain is built at the mesoscopic scale, to take into account the reinforcement geometry. A special procedure to generate finite element (FE) meshes of mesoscopic representative unit cells of woven composites has been developed, which links the deformation of the reinforcement, obtained from FE calculations, to the other models of the chain (resin injection, curing, and mechanical behavior). Two materials are studied to show the potential of the modeling chain: A four ply lay-up of a plain weave and of a satin weave fabric are considered, each of them having several compaction ratios and different nesting between the plies. With the aim of a validation of the modeling chain, multi-instrumented experimental tests have been carried out on several multi-layer plain weave composites with different thicknesses. In future applications, the proposed strategy will be placed in a toolbox able to design optimum woven composite structures based on local performance requirements.
Identifer | oai:union.ndltd.org:theses.fr/2013ORLE2014 |
Date | 29 May 2013 |
Creators | Grail, Gaël |
Contributors | Orléans, Hambli, Ridha |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds