Return to search

Kinetic investigation of LiMn2O4 for rechargeable lithium batteries

This thesis is concerned with kinetic characterisation of theinsertion compound LiMn2O4, which is used as positive electrodematerial in rechargeable lithium batteries. Three different typesof electrode configurations have been investigated, namely singleparticles, thin films and composite electrodes. Differentelectrochemical techniques, i.e. linear sweep voltammetry (LSV),electrochemical impedance spectroscopy (EIS), potential step, andgalvanostatic experiments were applied under various experimentalconditions. The majority of the experimental data were analysedby relevant mathematical models used for describing the reactionsteps of insertion compounds. It was concluded that a model based on interfacialcharge-transfer, solid-phase diffusion and an external iR-dropcould be fairly well fitted to LSV data measured on a singleelectrode system over a narrow range of sweep rates. However, itwas also found that the fitted parameter values vary greatly withthe characteristic length and the sweep rate. This indicates thatthe physical description used is too simple for explaining theelectrochemical responses measured over a large range of chargeand discharge rates. EIS was found to be a well-suited technique for separatingtime constants for different physical processes in the insertionand extraction reaction. It was demonstrated that the impedanceresponse is strongly dependent on the current collector used.According to the literature, reasonable values of theexchange-current density and solid-phase diffusion coefficientwere determined for various states-of-discharge, temperatures andelectrolyte compositions. Experiments were carried out in bothliquid and gel electrolytes. A method which improves thedistinction between the time constants related to thematerial’s intrinsic properties and possible porous effectsis presented. The method was applied to composite electrodes.This method utilises, in addition to the impedance responsemeasured in front of the electrode, also the impedance measuredat the backside of the electrode. Finally, the kinetics of a composite electrode was alsoinvestigated by in situ X-ray diffraction (in situ XRD) incombination with galvanostatic and potentiostatic experiments. Noevidence of lithium concentration gradients could be observedfrom XRD data, even at the highest rate applied (i.e. ~6C), thusexcluding solid-phase diffusion and also phase-boundary movement,as described by Fick’s law, as the ratelimiting step. <b>Key words:</b>linear sweep voltammetry, electrochemicalimpedance spectroscopy, potential step, in situ X-raydiffraction, microelectrodes, electrode kinetics, LiMn2O4cathode, rechargeable lithium batteries

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-3429
Date January 2002
CreatorsHjelm, Anna-Karin
PublisherKTH, Kemiteknik, Stockholm : Kemiteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-KET, 1104-3466 ; 162

Page generated in 0.0193 seconds