A novel strategy for the intercalation of antimony (Sb) under the (6√3 × 6√3)R30° reconstruction, also known as buffer layer, on SiC(0001) is reported. Using X-ray photoelectron spectroscopy, low-energy electron diffraction, and angle-resolved photoelectron spectroscopy, it is demonstrated that, while the intercalation of the volatile Sb is not possible by annealing the Sb-coated buffer layer in ultrahigh vacuum, it can be achieved by annealing the sample in an atmosphere of Ar, which suppresses Sb desorption. The intercalation leads to a decoupling of the buffer layer from the SiC(0001) surface and the formation of quasi-freestanding graphene. The intercalation process paves the way for future studies of the formation of quasi-freestanding graphene by intercalation of high-vapor-pressure elements, which are not accessible by previously known intercalation techniques, and thus provides new avenues for the manipulation of epitaxial graphene on SiC.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35599 |
Date | 07 October 2019 |
Creators | Seyller, Thomas, Roscher, Sarah, Timmermann, Felix, Daniel, Marcus V., Speck, Florian, Wanke, Martina, Albrecht, Manfred, Wolff, Susanne |
Contributors | Technische Universität Chemnitz, Universität Augsburg |
Publisher | Wiley-VCH Verlag |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.1002/andp.201900199, 1521-3889, 201900199, 10.1002/andp.201900199 |
Page generated in 0.0018 seconds