Return to search

Voraussetzungen für die Quantifizierung in der Emissions-Tomographie

Die Quantifizierung bei nuklearmedizinischen Untersuchungen bedeutet die Ermittlung der Aktivitätskonzentration im Gewebe und gegebenenfalls in einem weiteren Schritt die Bestimmung parametrischer Größen zur physiologischen Quantifizierung. Unter der Voraussetzung der korrekten Funktion des Gerätes (Qualitätskontrolle, Normalisierung, Kalibrierung) ist für die Quantifizierung die Anwendung folgender Korrekturen notwendig: Totzeit-, Absorptions-, Streustrahlungs- und ggf. Recovery-Korrektur wie auch Korrektur von zufälligen Koinzidenzen. Aus messtechnischer Sicht basiert die Überlegenheit der PET gegenüber der SPECT auf den Vorteilen des Einsatzes des Koinzidenznachweises (elektronische Kollimierung) anstelle der mechanischen Kollimierung in entsprechend konstruierten ringförmigen Systemen, welche sich in überlegenen physikalischen Abbildungseigenschaften niederschlägt. Der primäre Vorteil der elektronischen Kollimierung ist eine bessere und mehr stationäre räumliche Auflösung, gepaart mit einer höheren Meßempfindlichkeit, welche zu statistisch aussagefähigerer Bildqualität führt, und die Möglichkeit einer geradlinigen, aber präzisen Form der Absorptionskorrektur auf der Basis gemessener Transmissionsdaten. Weitere Vorteile sind ein deutlich verringerter Streustrahlungsanteil, welcher in Verbindung mit den vorstehend genannten Eigenschaften zu kontrast- und detailreicheren Bildern führt, sowie eine deutliche Steigerung der Zählratenkapazität, die durch eine Steigerung der Anzahl der voneinander unabhängigen Zählkanäle bei Verwendung der üblichen Blockdetektoren erreicht wird und die es erlaubt, die gesteigerte Ausbeute ohne einen Zwang zur Aktivitätsreduktion in statistische Bildqualität umzusetzen. Die dargestellten Eigenschaften gestatten dann in Verbindung mit gut entwickelten Korrekturverfahren eine Kalibrierung des PET-Systems und damit die quantitative Analyse von in vivo gemessenen Aktivitätskonzentrationen. Berücksichtigt man die Problematik der Absorptions- und Streustrahlungskorrektur bei der SPECT, so ergibt sich als Folgerung, dass bei der Tomographie mit der Gammakamera eine Quantifizierung nicht möglich ist. Aufgrund der Entwicklungen auf dem Gebiet der Rekonstruktions- und Korrekturverfahren kann damit gerechnet werden, dass die Abbildungseigenschaften von SPECT-Systemen verbessert werden, so dass viele Limitationen der SPECT-Technik zumindest abgemildert werden dürften, die Leistung der PET-Geräte aus physikalischen Gründen jedoch nicht erreicht werden kann. / Quantifying in nuclear medicine examinations is equivalent to the determination of local activity concentrations in human tissue and, if appropriate, in an additional step the determination of quantitative physiological parameters. Provided that the instrument is in proper working conditions (quality control, normalization, calibration) quantification requires the application of the following corrections for: dead time, attenuation, scatter and, if applicable, recovery as well as random coincidences. From the physical point of view the superiority of PET over SPECT is based on the advantages offered by coincidence detection (electronic collimation) as compared to mechanical collimation. For ring-type systems of the appropriate design these advantages result in superior imaging quality. The main advantage of the aforementioned electronic collimation is given by a better and more stationary spatial resolution, accompanied by a higher sensitivity resulting in an improved statistical image quality, and an attenuation correction method based on measured transmission data, which is straightforward and accurate. Further advantages are a markedly reduced scatter fraction, leading in combination with the aforementioned properties to images of high contrast and high detail, and a pronounced improvement in count rate performance, caused by an increased number of independent counting channels when using state-of-the-art block detectors. This higher count rate performance allows to transform increased sensitivity without being obliged to reduce administered activity into improved statistical image quality. In conjunction with well established correction methods the physical properties of PET described allow for a calibration of the system and, therefore, for a quantitative analysis of activity concentrations in vivo. Realizing the problems associated with attenuation and scatter correction in gamma camera based tomography leads to the conclusion that quantification in SPECT is not feasible. Taking into account further progress in reconstruction algorithms and correction methods, improvements in SPECT imaging quality may be anticipated thereby diminishing current limitations of the SPECT technique. Nevertheless, by physical arguments the performance of PET cannot be achieved.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/14570
Date21 June 2004
CreatorsGeworski, Lilli
ContributorsKirsch, C.-M., Burchert, W.
PublisherHumboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité
Source SetsHumboldt University of Berlin
LanguageGerman
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf, application/octet-stream, application/octet-stream

Page generated in 0.0026 seconds