O presente trabalho, realizado junto ao Grupo de Novos Materiais e Dispositivos (GNMD), no Laboratório de Microeletrônica do Departamento de Sistemas Eletrônicos da Escola Politécnica da USP, visou determinar algumas das propriedades termo-mecânicas de materiais depositados pela técnica de plasma enhanced chemical vapor deposition (PECVD) que são importantes para o desenvolvimento de sistemas microeletromecânicos (MEMS). O módulo de elasticidade, a tensão mecânica residual, o coeficiente de expansão térmica e a condutividade térmica de filmes finos de carbeto de silício amorfo hidrogenado (a-SiC:H) e de oxinitreto de silício (SiOxNy) foram estudados. Medidas de nanoindentação e ressonância de cantilevers foram utilizadas para a obtenção do módulo de elasticidade e os resultados obtidos foram similares (75 e 91 GPa) pelos dois métodos e compatíveis com valores encontrados na literatura. Além disso, obteve-se o módulo de elasticidade de filmes de cromo (285 GPa). A tensão mecânica residual dos filmes utilizados neste trabalho foi medida através da curvatura do substrato induzida pela deposição dos filmes e pela deformação de cantilevers. O valor médio da tensão mecânica, obtido pela curvatura do substrato, variou de -69 MPa até -1750 MPa, mostrando grande dependência das condições de deposição dos filmes. O método que utiliza a deformação de cantilevers possibilitou a obtenção do gradiente de tensão mecânica, que também mostrou uma dependência das condições de deposição, sendo sempre o a-SiC:H quase estequiométrico o menos tensionado. O coeficiente de expansão térmica foi medido utilizando a técnica do gradiente de temperatura e o valor obtido foi similar a valores reportados na literatura para o carbeto de silício cristalino. Para um a-SiC:H quase estequiométrico foi obtido um coeficiente de expansão térmica de 3,41 m/oC, enquanto para um a-SiC:H rico em carbono o valor foi de 4,36 m/oC. Também foi verificado que a variação da resistência do cromo em função da temperatura é pequena, não permitindo sua utilização como sensor de temperatura e inviabilizando a obtenção da condutividade térmica dos filmes estudados. Além disso, foram apresentados trabalhos promissores, mostrando o potencial dos materiais estudados para o desenvolvimento de MEMS. Nesses trabalhos, demonstrou-se a viabilidade de integrar microestruturas atuadas termicamente e guias de onda ópticos, utilizando os materiais estudados neste trabalho. Foram fabricados chaves ópticas, portas lógicas ópticas, fontes de luz integradas e acoplamento das fontes de luz com guias de onda. / This work, realized at the New Materials and Devices Group (GNMD) at the Microelectronics Laboratory of the Department of Electronic Systems of the Polytechnic School of the University of São Paulo, focused at the determination of thermo-mechanical properties of materials deposited by plasma enhanced chemical vapor deposition (PECVD) that are important for the development of microelectromechanical systems (MEMS). The Youngs modulus, the residual stress, the coefficient of thermal expansion and the thermal conductivity of amorphous hydrogenated silicon carbide (a-SiC:H) and silicon oxynitride (SiOxNy) thin films were studied. Nanoindentation and the resonance of cantilevers were used to obtain the Youngs modulus. The results were similar (75 and 91 GPa) with both methods and compatible with literature values. Further, the Youngs modulus of chromium films was also obtained (285 GPa). The residual stress of thin films was obtained through the substrate curvature induced by the film deposition and through the deformation of cantilever beams. The residual stress, obtained through the substrate curvature, varied between -69 MPa and -1750 MPa, showing great dependence on the deposition conditions of these materials. The deformation of cantilevers allowed the determination of the stress gradient and it was also affected by the deposition conditions. In all stress measurements the near stoichiometry a-SiC:H film was less stressed. The coefficient of thermal expansion was measured using the temperature gradient technique and the obtain values were similar to those reported in the literature for crystalline silicon carbide. For a near stoichiometry a-SiC:H film, a value of 3.41 m/oC was obtained, while a carbon rich film showed a thermal expansion coefficient of 4.36 m/oC. It was also verified that the variation of the chromium resistance as a function of temperature is small. This did not allow the utilization of chromium as a temperature sensor, which prevented the obtention of the thermal conductivity of the studied films. Also, some promising works were presented, showing potential applications of the studied materials for the development of MEMS. In these works, the viability of integration of thermal actuated microstructures and optical waveguides was demonstrated. In these works, optical switches, optical logic gates, integrated light sources and coupling of integrated light sources with optical waveguides were presented.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-09022009-162824 |
Date | 12 November 2008 |
Creators | Rehder, Gustavo Pamplona |
Contributors | Paez Carreño, Marcelo Nelson |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0036 seconds