Return to search

Optofluidic Manipulation with Nanomembrane Platforms Used for Solid-State Nanopore Integration

Nanopore technology has introduced new techniques for single particle detection and analysis. A nanopore consists of a small opening in a membrane on the nanometer scale. Nanopores are found in nature and are utilized for transporting molecules through biological membranes. Researchers have been able to mimic naturally forming biological nanopores and utilize them for a variety of sensing applications. Nanopores, fabricated either organically or inorganically, can be used for detecting biomarkers such as proteins, nucleic acids, and metabolites that translocate the membrane by way of the nanopore. Constant ionic current flow is measured through the nanopore by way of a sensitive ammeter. In the presence of a biomarker, the ionic current flow will be impeded, causing the electrical signal to drop. This drop uniquely corresponds to the type of particle passing through the nanopore. In this work, the thin membrane on which the nanopore resides is created through a newly developed meniscus shaped sacrificial technique. The sacrificial polymer material starts as a liquid and is confined to the microfluidic channel through the capillary effect, giving it the meniscus profile. It is used as a structural support on which a thin silicon dioxide layer is grown. The layer of oxide takes on the same natural meniscus shape as the sacrificial material. The polymer is subsequently etched, resulting in a hollow core liquid channel with a suspended meniscus membrane. This process allows a thin membrane to be fabricated on top of a microfluidic channel that ranges from 50-200 nm in thickness. The meniscus membrane is crucial to the success of nanopore formation. The nanoscale membrane allows for smaller, more precise nanopores to be created. Reduced nanopore dimensions are advantageous for the detection of smaller biomarkers. The platform described in this dissertation integrates solid-state naturally forming meniscus membranes with solid-core and optofluidic waveguides for nanopore detection applications. The waveguides allow for a particle trap to be introduced to the system. The ability to trap particles directly under the nanopore is critical to the speed of which the nanopore can operate. This dissertation focuses on the fabrication, characterization, and testing of an optofluidic platform that features a nanopore for rapid single molecule detection and analysis.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10987
Date16 June 2022
CreatorsWalker, Zachary J.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0024 seconds