Nesta dissertação estudamos, no âmbito teórico, algumas propostas recentes de processamento de informação quântica passiva, isto é, descartando protocolos de correção de erros. Recorrendo à criação de subespaços livres de decoerência através de um sistema físico de quatro spins acoplados ao resto do universo por um agente degenerado, mostramos ser possível construir um conjunto universal de portas lógicas (C-NOT, T e Hadamard) neste mesmo subespaço, alcançando, por conseguinte, a realização de qualquer operação computacional, insensivelmente ao resto do universo. Partimos de um hamiltoniano geral com interações individuais de cada spin com campos externos, além de acoplamentos controlados entre pares de spins. Experimentalmente, hamiltonianos deste tipo são comuns no contexto de junções Josephson, motivo pelo qual tratamos esta implementação em um capítulo especial. Introduzindo perturbativamente ao hamiltoniano operadores espúrios ao subespaço livre de decoerência, incluímos sensibilidade do sistema frente ao ambiente, criando a possibilidade da incursão de erros através de mecanismos de dissipação. Tais mecanismos foram investigados em termos da intensidade do parâmetro de acoplamento entre o sistema e o ambiente, revelando uma clara evidência teórica do Efeito Zenão Quântico, através da excelente concordância entre resultados de operações realizadas em subespaços livres de decoerência e operações realizadas em sistemas fortemente acoplados ao resto do universo. Neste sentido, selecionamos a fidelidade como medida de distância entre um estado em evolução a partir de um certo estado inicial do subespaço livre de decoerência (e submetido a dissipação), e um estado em evolução regida pela mesma operação quântica e a partir das mesmas condições iniciais no caso ideal, livre de decoerência. Essa abordagem explícita permitiu-nos obter a razão necessária entre os parâmetros associados a perturbação (que remove o estado do subespaço original) e acoplamento (entendido como a freqüência entre as medidas promovidas pelo resto do universo), para alcançar a eficiência desejada na realização de uma certa porta lógica. Tecnicamente, o trabalho envolveu vários resultados matemáticos novos e operacionalmente úteis, levando a simplificações importantes durante os cálculos envolvidos. / In this dissertation we studied theoretical aspects of some recent proposals of passive quantum information processing, that is, discarding error correction protocols. Falling back upon the creation of decoherence-free subspaces through a physical system of four spins coupled to the rest of the universe by a degenerate agent, we showed to be possible to build a universal set of logical quantum gates (C-NOT, T and Hadamard) in this same subspace, reaching, consequently, the accomplishment of any computational operation, callously to the rest of the universe. We started from a general Hamiltonian with individual interactions of each spin with external fields, besides controlled couplings between spin pairs. Experimentally, Hamiltonians like this are common in the context of Josephson junctions and, therefore, we treated this implementation in a special chapter. Perturbatively introducing spurious operators to the hamiltonian in the decoherence-free subspace, we included sensibility of the system to the environment, creating the possibility of the incursion of errors through dissipation mechanisms. Such mechanisms were investigated in terms of the intensity of the coupling parameter between the system and the environment, revealing an obvious theoretical evidence of the Quantum Zeno Effect, through the excellent agreement between the results of operations accomplished in decoherence-free subspace and operations accomplished in systems strongly coupled to the rest of the universe. In this sense, we selected the fidelity as the distance measure between a state in evolution starting from a certain initial state of the decoherence-free subspace (and submitted to the dissipation), and a state in evolution governed by the same quantum operation and starting from the same initial conditions in the ideal decoherence-free case. This explicit approach allowed us to obtain the necessary quotient between the associated disturbance parameter (that removes the state from the original subspace) and coupling parameter (understood as the frequency between the measurements promoted by the rest of the universe), to reach the efficiency desired in the accomplishment of a logic gate. Technically, the work involved several new operationally useful mathematical results, leading to important simplifications during the involved calculations.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12112007-090919 |
Date | 23 March 2004 |
Creators | Mendonça, Paulo Eduardo Marques Furtado de |
Contributors | Napolitano, Reginaldo de Jesus |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0153 seconds