Return to search

Analyse mathématique de la supraconductivité dans un domaine à coins: méthodes semi-classiques et numériques

La théorie de la supraconductivité, modélisée par Ginzburg et Landau, motive les travaux relatifs à l'opérateur de Schrödinger avec champ magnétique. L'objet de cette thèse est d'analyser l'influence de la géométrie du domaine sur l'apparition de la supraconductivité en étendant les résultats existant pour des domaines réguliers à des domaines à coins. L'analyse semi-classique conduit à étudier trois opérateurs modèles : la réalisation de Neumann de l'opérateur de Schrödinger avec champ magnétique constant sur le plan, le demi-plan et les secteurs angulaires. L'étude des deux premiers est bien connue et nous nous concentrons sur le dernier. Après avoir déterminé le bas du spectre essentiel, nous montrons que le bas du spectre est une valeur propre pour un secteur d'angle aigu. Nous explicitons le développement limité de la plus petite valeur propre quand l'angle du secteur tend vers 0 et précisons la localisation de l'état fondamental grâce aux techniques d'Agmon. Nous illustrons et estimons ensuite le comportement des vecteurs et valeurs propres à l'aide d'outils numériques basés sur la méthode des éléments finis. La localisation de l'état fondamental rend le problème discret très mal conditionné mais l'analyse des propriétés de l'opérateur et des défauts des méthodes classiques permet malgré tout de mettre en oeuvre un algorithme robuste et efficace calculant l'état fondamental. Afin d'améliorer les résultats numériques, nous construisons des estimateurs a posteriori pour ce problème aux valeurs propres et utilisons les techniques de raffinement de maillages pour localiser l'état propre dans des domaines généraux et étudier la variation du bas du spectre en fonction de l'angle du secteur.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00005430
Date11 December 2003
CreatorsBONNAILLIE, Virginie
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds