Return to search

Intégration et caractérisation électrique d'éléments de mémorisation à commutation de résistance de type back-end à base d'oxydes métalliques.

Cette thèse porte principalement sur la caractérisation électrique et la modélisation physique d'éléments mémoires émergents de type OxRRAM (Oxide Resistive Random Access Memory) intégrant soit un oxyde de nickel, soit un oxyde de hafnium. Une fois la maturité technologique atteinte, ce concept de mémoire est susceptible de remplacer la technologie Flash qui fait encore figure de référence. Les principaux avantages de la technologie OxRRAM reposent sur une très bonne compatibilité avec les filières CMOS, un faible nombre d'étapes de fabrication, une grande densité d'intégration et des performances attractives en termes de fonctionnement. Le premier objectif de ce travail concerne le diélectrique employé dans les cellules. Il s'agit d'apporter des éléments factuels permettant d'orienter un choix technologique sur la méthode d'élaboration de l'oxyde de nickel (oxydation thermique ou pulvérisation cathodique réactive) puis d'évaluer les performances de cellules à base d'oyxde de hafnium. Le second objectif est d'approfondir la compréhension des mécanismes physiques responsables du changement de résistance des dispositifs mémoire par une approche de modélisation physique des phénomènes opérant lors des phases d'écriture et d'effacement, sujet encore largement débattu dans la communauté scientifique. Le troisième objectif de cette thèse est d'évaluer, par le biais de caractérisations électriques, les phénomènes parasites intervenant dans les éléments mémoires de type 1R (élément résistif sans dispositif d'adressage) et, en particulier, la décharge capacitive apparaissant lors de leur programmation (opérations d'écriture). / This work is focused on the electrical characterization and physical modeling of emerging OxRRAM memories (Oxide Resistive Random Access Memory) integrating nickel or hafnium oxide. After reaching maturity, this memory concept is likely to replace the Flash technology which is still a standard in the CMOS industry. The main advantages of resistive memories technology is their good compatibility with CMOS processes, a small number of manufacturing steps, a high integration density and their attractive performances in terms of memory operation. The first objective of this thesis is to provide enough informations allowing to orientate the elaboration process of the active nickel oxide layer (thermal oxidation, reactive sputtering) then to compare the performances of the fabricated cells with devices featuring a hafnium oxide layer. The second objective is to understand the physical mechanisms responsible of the device resistance change. A physical model is proposed allowing to apprehend SET and RESET phenomenon in memory devices, subject which is still widely debated in the scientific community. The third objective of this thesis is to evaluate electrical parasitic phenomenon observed in 1R-type memory elements (resistive element without addressing device), in particular the parasitic capacitance appearing during cell programming (writing operation).

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4713
Date13 May 2013
CreatorsTirano, Sauveur
ContributorsAix-Marseille, Muller, Christophe, Deleruyelle, Damien
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds