Return to search

Recherche de méthodes expérimentales de simulation de canaux de propagation en chambre réverbérante à brassage de modes / Research of experimental methods to simulate propagation channels in mode-stirred reverberation chamber

Les tests de dispositifs de communication sans fil peuvent être réalisés en utilisant des simulations numériques ou des sondeurs de canaux. Bien que ne reflétant pas un environnement électromagnétique réaliste, une chambre réverbérante peut néanmoins émuler un canal de propagation comparable à un cas réel si l’on modifie convenablement ses propriétés. Les propriétés des signaux générés dans une chambre réverbérante sont fonction de différents paramètres. Au cours des trois années de thèse, nous avons analysé et mis en oeuvre plusieurs techniques pour mesurer et contrôler ces paramètres à l’intérieur d’une chambre réverbérante. D’abord, différents estimateurs du facteur K sont testés et leurs propriétés sont évaluées. Nous présentons les limites de fonctionnement utiles dans lesquelles différents estimateurspeuvent être utilisés. Ensuite, nous proposons deux nouveaux estimateurs qui utilisent comme données d’entrée seulement l’enveloppe du signal. Ils apportent en outre des améliorations sur la gamme des valeurs détectables du facteur K. Une des possibilités pour contrôler un canal de propagation à l’intérieur d’une chambre réverbérante est d’utiliser des matériaux absorbants. Nous présentons une méthode pour estimer la surface équivalente moyenne d’absorption en utilisant une seule antenne. Cette méthode exploite la mesure de la bande de cohérence du canal de propagation. Ensuite, nous étendons notre analyse à la prédiction de la surface équivalente moyenne d’absorption lorsqueles dimensions géométriques et les propriétés électromagnétiques des absorbants sont connues. On crée ensuite un modèle de canal de propagation en exploitant les régimes transitoire et permanent du signal. Avec ce modèle, selon les informations disponibles, on peut extraire le facteur K, la surface équivalente moyenne d’absorption et différents paramètres temporels (i.e., profil de l’étalement des retards). Nous poursuivons avec deux applications possibles des chambres réverbérantes. Tout d’abord, on évalue le gain d’une antenne à partir de mesures du coefficient de réflexion decette antenne. Nous étendons notre analyse à l’évaluation du diagramme de rayonnement de l’antenne et de son erreur d’estimation. Nous estimons aussi la désadaptation de l’antenne et son ouverture à 3 dB. La deuxième application porte sur l’évaluation du gain de diversité dans la chambre réverbérante. Nous isolons les influences des efficacités des antennes, des puissances des composantes brassées, et des facteurs K sur l’évaluation du gain de diversité.On obtient une relation simple de la corrélation de puissance en fonction de la corrélation complexe lorsque les facteurs K sur différents branches ne sont pas identiques. Nous montrons que lors d’un fort déséquilibre de facteur K il est impossible de conclure sur le gain de diversité à partir de la seule évaluation de la corrélation d’enveloppe ou de puissance. À l’aide de simulations statistiques on compare le gain de diversité mesuré avec les valeurs simulées. / The testing of wireless devices is generally done using numerical simulations or channel sounders. Though a reverberation chamber does not reflect a real transmission environment, its properties can also be appropriately modifiedto emulate one. This emulation may be achieved thanks to various parameters. Our PhD thesis has been devoted toanalyze and implement several techniques to measure and control these parameters inside reverberation chambers.First we evaluate different K-factor estimators and their capabilities. We present the useful limits in which severalcomplex, phase and envelope K-factor estimators can be used. Then, we propose two new envelope-based estimatorsimproving the useful range of detectable values of K-factor. One of the possibilities to control a propagation channel inside areverberation chamber is to use absorbing materials. We present a method to estimate the average absorbing crosssection by using only one antenna. This is done with measurements of coherence bandwidth of the channel. Then,we extend our analysis to predict the average absorbing cross section when we know the physical dimensions of aparallelepiped absorber as well its electromagnetic properties. Next, we create a model of the reverberation chamberpropagation channel using the transient regime and steady state of the signal. With this model, depending on the availableinformation, we can extract the K-factor, the average absorbing cross section and different time spreads parameters (i.e., mean delay spread and the root mean square delay spread). We continue with two possible applications of the reverberation chamber. First, we evaluate the gain of an antenna from only the measurement of reflection coefficient. We extend our analysis to the evaluation of antenna pattern and its estimation errors. We also estimate the antenna mismatch and half power beamwidth. The second application deals with the evaluation of the diversity gain in reverberation chamber. We isolate the effects on the diversity gain due to different antenna efficiencies, stirred powers and K-factors. Then, we estimate a simple relation of the power correlation as a function of the complex correlation when the K-factors on different branches are not identical. We show that using an envelope/power correlation as a criterion to characterize the diversity may bias the conclusions without taking into account other parameters. Using statistical simulations we compare the measured diversity gain with the simulated values.

Identiferoai:union.ndltd.org:theses.fr/2013ISAR0008
Date04 April 2013
CreatorsAndriés, Mihai Ionut
ContributorsRennes, INSA, Besnier, Philippe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds