Return to search

Accélération d'électrons à l'aide d'impulsions laser ultrabrèves et fortement focalisées

Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / Lorsque fortement focalisées, les impulsions laser de haute puissance génèrent des champs électromagnétiques d’amplitude gigantesque. Ces derniers peuvent être mis à profit pour accélérer des électrons à une grande énergie sur une très courte distance. Les progrès récents dans le domaine des lasers de haute puissance laissent ainsi entrevoir des perspectives excitantes dans le développement d’une nouvelle génération d’accélérateurs laser qui seraient beaucoup plus compacts et moins dispendieux que les accélérateurs d’électrons conventionnels. Parmi les différents schémas d’accélération laser proposés, l’utilisation d’impulsions laser de polarisation radiale s’avère prometteuse. Cette méthode tire profit de la composante longitudinale du champ électrique au centre d’un faisceau laser de type TM01 afin d’accélérer des électrons le long de l’axe optique. L’objectif spécifique du projet de doctorat présenté dans cette thèse est d’étudier l’accélération d’électrons par impulsions TM01 dans le régime des impulsions ultrabrèves et fortement focalisées. Dans ces conditions extrêmes, les impulsions laser doivent impérativement être modélisées à l’aide de solutions exactes aux équations de Maxwell. Nous présentons d’abord une technique permettant d’obtenir une solution exacte sous forme fermée aux équations de Maxwell pour décrire le champ électromagnétique de l’impulsion TM01. Cette solution exacte nous permet de modéliser rigoureusement la dynamique en régime d’impulsions ultrabrèves et fortement focalisées et d’en faire ressortir les caractéristiques intéressantes. Il est également mis en évidence qu’une solution exacte pour le champ électromagnétique n’est pas seulement utile en régime non paraxial, mais qu’elle est également nécessaire pour modéliser correctement la dynamique dans des conditions de faible focalisation. Une partie de cette thèse s’intéresse finalement à une application intéressante de l’accélération par impulsions TM01 ultrabrèves et fortement focalisées, soit la production d’impulsions ultrabrèves d’électrons sous-relativistes. À l’aide de simulations particle-in-cell, nous démontrons la possibilité d’accélérer des impulsions d’électrons d’une durée de l’ordre de la femtoseconde à quelques centaines de keV d’énergie lorsqu’une impulsion TM01 de quelques centaines de gigawatts est focalisée dans un gaz de faible densité. Étant situées dans la fenêtre énergétique adéquate, ces impulsions d’électrons pourraient permettre d’améliorer significativement la résolution temporelle dans les expériences d’imagerie atomique et moléculaire par diffraction électronique ultrarapide. / When focused on a tiny spot, high-power laser pulses generate gigantic electromagnetic fields. Under these strong field conditions, charged particles can be accelerated up to high energies over short distances. Recent advances in high-power laser technology hint at exciting new possibilities in the development of a new generation of laser-driven electron accelerators that are expected to offer a robust, compact, and low-cost alternative to conventional linear accelerators. Among the many proposed laser-driven acceleration schemes, the use of radially polarized laser pulses is very promising. In this method, the electrons are accelerated along the optical axis by the strong longitudinal electric field component at the center of a TM01 beam. The main objective of this thesis is to investigate electron acceleration driven by TM01 pulses under ultrashort pulse and strong focusing conditions. In this nonparaxial and ultrashort pulse regime, the laser pulses must be rigorously modeled as exact solutions to Maxwell’s equations. We first present the tools that are used to obtain an exact closed-form solution to Maxwell’s equations for a TM01 pulse. This exact solution allows us to accurately model the acceleration process and to highlight several interesting properties of the dynamics in the nonparaxial and ultrashort pulse regime. It is also shown that an exact solution is not only useful to investigate electron acceleration under nonparaxial conditions, but also necessary to correctly describe the dynamics in the weak focusing limit. A part of this thesis is also concerned with an interesting property of the acceleration driven by ultrashort and tightly focused TM01 pulses, namely the generation of ultrashort bunches of subrelativistic electrons. Using particle-in-cell simulations, we demonstrate the possibility of generating one-femtosecond electron pulses at few-hundred-keV energies when a few-hundred-GW TM01 pulse is tightly focused in a low-density gas. Since they are located in the appropriate energy window, these electron pulses could potentially lead to a significant improvement in the time resolution of atomic and molecular imaging experiments based on ultrafast electron diffraction.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26040
Date23 April 2018
CreatorsMarceau, Vincent
ContributorsPiché, Michel
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxx, 157 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0024 seconds