Return to search

Halogenation Activity of Mammalian Heme Peroxidases

Mammalian heme peroxidases are fascinating due to their unique peculiarity of oxidizing
(pseudo)halides under physiologically relevant conditions. These proteins are able either to incorporate oxidized halides into substrates adjacent to the active site or to generate different oxidized
(pseudo)halogenated species, which can take part in multiple (pseudo)halogenation and oxidation
reactions with cell and tissue constituents. The present article reviews basic biochemical and redox
mechanisms of (pseudo)halogenation activity as well as the physiological role of heme peroxidases.
Thyroid peroxidase and peroxidasin are key enzymes for thyroid hormone synthesis and the formation of functional cross-links in collagen IV during basement membrane formation. Special attention
is directed to the properties, enzymatic mechanisms, and resulting (pseudo)halogenated products of
the immunologically relevant proteins such as myeloperoxidase, eosinophil peroxidase, and lactoperoxidase. The potential role of the (pseudo)halogenated products (hypochlorous acid, hypobromous
acid, hypothiocyanite, and cyanate) of these three heme peroxidases is further discussed

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:85913
Date09 June 2023
CreatorsArnhold, Jürgen, Malle, Ernst
PublisherMDPI
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation890

Page generated in 0.0055 seconds