Turbulent boundary layer and metamaterial properties were explored to initiate the viability of controlling acoustic waves driven by pressure fluctuations from flow. A turbulent boundary layer scaling analysis was performed on zero-pressure-gradient turbulent boundary layers over rough surfaces, for 30,000≤〖Re〗_θ≤100,000. Relationships between fluctuating pressures and velocities were explored through the pressure Poisson equation. Certain scaling laws were implemented in attempts to collapse velocity spectra and turbulence profiles. Such analyses were performed to justify a proper scaling of the low-frequency region of the wall-pressure spectrum. Such frequencies are commonly associated with eddies containing the largest length scales. This study compared three scaling methods proposed in literature: The low-frequency classical scaling (velocity scale U_τ, length scale δ), the convection velocity scaling (U_e-U ̅_c, δ), and the Zagarola-Smits scaling (U_e-U ̅, δ). A default scaling (U_e, δ) was also selected as a baseline case for comparison. At some level, the classical scaling best collapsed rough and smooth wall Reynolds stress profiles. Low-pass filtering of the scaled turbulence profiles improved the rough-wall scaling of the Zagarola-Smits and convection velocity laws. However, inconsistent scaled results between the pressure and velocity requires a more rigorous pressure Poisson analysis. The selection of a proper scaling law gives insight into turbulent boundary layers as possible sources for acoustic metamaterials. A quiescent (no flow) experiment was conducted to measure the capabilities of a metamaterial in retaining acoustic surface waves. A point source speaker provided an acoustic input while the resulting sound waves were measured with a probe microphone. Acoustic surface waves were found via Fourier analysis in time and space. Standing acoustic surface waves were identified. Membrane response properties were measured to obtain source condition characteristics for turbulent boundary layers once the metamaterial is exposed to flow. / Master of Science / Aerodynamicists are often concerned with interactions between fluids and solids, such as an aircraft wing gliding through air. Due to frictional effects, the relative velocity of the air on the solid-surface is negligible. This results in a layer of slower moving fluid near the surface referred to as a boundary layer. Boundary layers regularly occur in the fluid-solid interface, and account for a sufficient amount of noise and drag on aircraft. To compensate for increases in drag, engines are required to produce increased amounts of power. This leads to higher fuel consumption and increased costs. Additionally, most boundary layers in nature are turbulent, or chaotic. Therefore, it is difficult to predict the exact paths of air molecules as they travel within a boundary layer. Because of its intriguing physics and impacts on economic costs, turbulent boundary layers have been a popular research topic. This study analyzed air pressure and velocity measurements of turbulent boundary layers. Relationships between the two were drawn, which fostered a discussion of future works in the field. Mainly, the simultaneous measurements of pressure on the surface and boundary layer velocity can be performed with understanding of the Pressure Poisson equation. This equation is a mathematical representation of the boundary layer pressure on the surface. This study also explored the possibility of turbulent-boundary-layer-driven-acoustic-metamaterials. Acoustic metamaterials contain hundreds of cavities which can collectively manipulate passing sound waves. A facility was developed at Virginia Tech to measure this effect, with aid from a similar laboratory at Exeter University. Microphone measurements showed the reduction of sound wave speed across the metamaterial, showing promise in acoustic manipulation. Applications in metamaterials in the altering of sound caused by turbulent boundary layers were also explored and discussed.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/90796 |
Date | 01 July 2019 |
Creators | Repasky, Russell James |
Contributors | Aerospace and Ocean Engineering, Devenport, William J., Lowe, K. Todd, Alexander, William Nathan |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0023 seconds