Density functional (DFT) methods are first used to study 22 of the most stable solution-phase UN4O12 isomers containing uranyl nitrate, UO2(NO3)2. Based on relative free energy calculations, 4 solution (a6, a5, a8, and a1) and 5 gas-phase isomers (a1, a2, a3, b1, and b2) are identified as the strongest candidates to exist and possibly predominate within their respective environments.
DFT is then applied to a new form of binucleating Schiff–base polypyrrolic macrocycles containing actinyl ions [AnO2]n+ (An = U, Np, Pu; n = 1, 2) and 3d transition metals (TM): Mn, Fe, Co, and Zn. Formal bond order evidence is provided for 24 TM to actinyl–endo–oxygen partial bond formations. Special structural cases are discussed. Redox potentials for AnVIO21/AnVO21– couples closely follow the Np > Pu > U trend seen for AnO2(H2O)52+/1+. Predictions of –1.10, 0.25, and 0.01 eV are made for U, Np, and Pu redox potentials.
Identifer | oai:union.ndltd.org:MANITOBA/oai:mspace.lib.umanitoba.ca:1993/3034 |
Date | 07 May 2008 |
Creators | Berard, Joel J. |
Contributors | Schreckenbach, Georg (Chemistry), Budzelaar, Peter (Chemistry)Fayek, Mostafa Fayek (Geological Science) |
Source Sets | University of Manitoba Canada |
Language | en_US |
Detected Language | English |
Page generated in 0.0016 seconds