Die funktionelle Magnetresonanztomographie (fMRT) ist ein nicht-invasives Bildgebungsverfahren, mit dem Veränderungen der neuronalen Aktivität im Gehirn mit hoher räumlicher Auflösung erfasst werden können. Mit der fMRT-Bildgebung bei neurowissenschaftlichen Experimenten wurden in den letzten beiden Jahrzehnten bedeutende Erkenntnisse für die Hirnforschung und Medizin gewonnen. Mit Hilfe dieser Methode werden neuronale Aktivitätsunterschiede bei der Durchführung einer bestimmten Aufgabe, z. B. dem Betrachten von Bildern mit emotionalen Inhalten, erfasst und die Daten unabhängig von der Messung zu einem späteren Zeitpunkt statistisch ausgewertet. Mit Hilfe des technischen Fortschritts im letzten Jahrzehnt
ist es darüber hinaus möglich geworden, fMRT-Daten direkt zur Aufnahmezeit zu verarbeiten und auszuwerten. Dies wird als Echtzeit-fMRT bezeichnet, wenn die Datenverarbeitung schneller erfolgt als die Aufnahme eines Hirnvolumens (aktuell ca. zwei Sekunden). Die Ergebnisse der Echtzeitdatenverarbeitung können dann wiederum als Steuerbefehle für verschiedene Anwendungen verwendet werden. Daher wird dies auch als Hirn-Computer-Schnittstelle (Brain Computer Interface, BCI) mittels fMRT bezeichnet. Die Echtzeitverarbeitung von fMRT-Daten ermöglicht mehrere neue Anwendungen. Dazu gehören unter anderem die Qualitätskontrolle
zur Laufzeit von fMRT-Experimenten, die schnelle funktionelle Lokalisierung von Hirnarealen entweder für neurowissenschaftliche Experimente oder intraoperativ, die Kontrolle des Experimentes mittels des Probandenverhaltens und insbesondere die Möglichkeit, sogenannte fMRT-Neurofeedbackexperimente durchzuführen. Bei diesen Experimenten lernen Probanden, die Aktivität von definierten Hirnarealen willentlich zu beeinflussen. Das Ziel dabei ist, Veränderungen in ihrem Verhalten zu generieren. Die Umsetzung eines BCIs mittels Echtzeit-fMRT ist eine
interdisziplinäre Aufgabenstellung von MR-Physik, Informatik und Neurowissenschaften um das Verständnis des menschlichen Gehirns zu verbessern und neue Therapieansätze zu gestalten. Für diese hard- und softwaretechnisch anspruchsvolle Aufgabe gibt es einen enormen Bedarf an
neuen Algorithmen zur Datenverarbeitung und Ansätzen zur verbesserten Datenakquise.
In diesem Zusammenhang präsentiert die vorliegende Arbeit ein neues Softwareframework, das einerseits eine integrierte Gesamtlösung für die Echtzeit-fMRT darstellt und in seinen Teilmodulen eine abstrakte Basis für eine universelle Methodenentwicklung anbietet. Diese Arbeit beschreibt die grundlegenden abstrakten Konzepte und die Implementierung in ein neues Softwarepaket namens ’Brain Analysis in Real-Time’ (BART). Der Fokus der Arbeit liegt auf zwei Kernmodulen, die für universelle Gestaltung von sogenannten adaptiven Paradigmen und die Einbindung von Echtzeit-fMRT-Datenverarbeitungsalgorithmen konzipiert sind. Bei adaptiven Paradigmen werden zur Laufzeit eines Experiments physiologische Parameter (z. B. Herzrate) oder Verhaltensdaten (z. B. Augenbewegungen) simultan zu den fMRT-Daten erfasst und analysiert, um die Stimulation eines Probanden entsprechend zu adaptieren. Damit kann die Zuverlässigkeit der Daten, die zur Auswertung zur Verfügung stehen, optimiert werden. Die vorliegende
Arbeit präsentiert das dazu notwendige abstrakte Grundkonzept des neuen Softwareframeworks und die ersten konkreten Implementierungen für die Datenverarbeitung und adaptive Paradigmen. Das Framework kann zukünftig mit neuen methodischen Ideen erweitert werden. Dazu gehören
die Einbindung neuer Datenverarbeitungsalgorithmen, wie z. B. Konnektivitätsanalysen und die Adaption von Paradigmen durch weitere physiologische Parameter. Dabei ist insbesondere die Kombination mit EEG-Signalen von großem Interesse. Außerdem bietet das System eine universelle Grundlage für die zukünftige Arbeit an Neurofeedbackexperimenten. Das in dieser Arbeit entwickelte Framework bietet im Vergleich zu bisher vorgestellten Lösungsansätzen ein Ein-Computer-Setup mit einem erweiterbaren Methodenspektrum. Damit wird die Komplexität des notwendigen technischen Setups reduziert und ist nicht auf einzelne Anwendungsfälle beschränkt. Es können flexibel neue Datenverarbeitungsalgorithmen für ein fMRT-BCI eingebunden und vielgestaltige Anwendungsfälle von adaptiven Paradigmen konzipiert
werden. Eine Abstraktion der Stimulation und die Kombination mit der Echtzeitauswertung ist bisher einzigartig für neurowissenschaftliche Experimente.
Zusätzlich zu den theoretischen und technischen Erläuterungen werden im empirischen Teil der vorliegenden Arbeit neurowissenschaftliche Experimente, die mit dem Softwarepaket BART durchgeführt wurden, vorgestellt und deren Ergebnisse erläutert. Dabei wird die Zuverlässigkeit und Funktionsweise der Implementierung in allen Teilschritten der Datenerfassung und -verarbeitung validiert. Die Ergebnisse verifizieren die Implementierung einer parallelisierten fMRT-Analyse.Weiterhin wird eine erste konkrete Umsetzung für ein adaptives Paradigma vorgestellt, bei dem zur Laufzeit die Blickrichtung der Probanden berücksichtigt wird. Die Ergebnisse zeigen die signifikanten Verbesserungen der Reliabilität der fMRT-Ergebnisse aufgrund der optimierten Datenqualität durch die Adaption des Paradigmas.
Zusammengefasst umfasst die vorliegende Arbeit eine interdisziplinäre Aufgabe, die sich aus der Verarbeitung von MR-Daten in Echtzeit, einem neuen abstraktes Softwarekonzept für Entwicklung neuer methodischer Ansätze und der Durchführung von neurowissenschaftlichen Experimenten zusammensetzt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-165443 |
Date | 04 May 2015 |
Creators | Hellrung, Lydia |
Contributors | Mathematik und Informatik, Informatik, Prof. Dr. Arno Villringer, Prof. Dr. Martin Bogdan, Prof. Dr. Klaus-Robert Müller |
Publisher | Universitätsbibliothek Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0092 seconds