O Método dos Elementos Finitos Generalizados (MEFG) propõe, basicamente, uma ampliação no espaço de aproximação do Método dos Elementos Finitos (MEF) convencional por meio de funções de enriquecimento que representem bem comportamentos locais da solução do problema. Ele tem se apresentado como uma alternativa eficaz para a obtenção de soluções numéricas com boa precisão para problemas nos quais o MEF convencional requer custo computacional bastante elevado. Em relação ao controle sobre a precisão da resposta numérica obtida, o estudo e análise de erros de discretização, assim como a implementação de estratégias adaptativas, são temas que já foram amplamente abordados para o MEF e recentemente vêm sendo explorados no contexto do MEFG e suas versões estáveis. Neste trabalho, trata-se do tema de adaptatividade para o MEFG, objetivando melhor avaliar a precisão das soluções encontradas assim como garantir que elas atendam a limitações pré-especificadas para medidas dos erros. Em primeiro lugar, avalia-se a utilização de um estimador de erro a posteriori, recentemente proposto, como indicador de regiões onde a adaptatividade h ou p possa ser aplicada. Com o indicador adotado, estende-se para o MEFG estratégias h-adaptativas comumente utilizadas para o MEF, realizadas a partir de sucessivas gerações da malha. Além disso, explora-se neste trabalho uma técnica de agrupamento de partições da unidade, específica do MEFG, para tratar problemas de malhas irregulares e possibilitar análises h-adaptativas realizadas sobre sub-regiões do domínio do problema. Já no que se refere às análises p-adaptativas, a estratégia consiste em definir regiões de interesse para ativar o enriquecimento polinomial da solução aproximada. Exemplos numéricos ilustram a efetividade de todas as análises adaptativas implementadas, propostas para o MEFG e suas versões estáveis, as quais proporcionam respostas que atendem a limites de tolerância previamente estabelecidos. / The Generalized Finite Element Method (GFEM) proposes the generation of numerical approximations that belong to an space obtained by augmenting low-order standard finite element approximation spaces by enrichment functions that well represent local behaviours of the problem solution. The method has become an efficient alternative to obtain solutions with good accuracy for problems in which the standard Finite Element Method (FEM) would require excessively high computational cost. Regarding the control over the numerical solutions\' accuracy, discretization error analysis and study, as well as the implementation of adaptive strategies, are subjects largely studied for the FEM and they are recently being exploited in the GFEM and its stable versions context. In this work, adaptivity for the GFEM is addressed, looking for better evaluate the solutions\' accuracy and ensure that they meet users\' pre-specified limits for error measures. Firstly, the use of a recently proposed a posteriori error estimator as an indicator of the regions where h- or p-adaptivity can be performed is evaluated. With this chosen indicator, h-adaptive strategies commonly used for the FEM are extended to the GFEM by performing successive remeshings. Moreover, a partition of unity clustering technique is also exploited in order to treat nonmatching meshes and to enable h-adaptive analysis to be performed over some pre-defined domain subregions. Regarding the p-adaptive analysis, the basic strategy consists of defining some regions over which it will be set polynomial enrichments for the approximate solution using a particular GFEM stable version. Numerical examples show the effectiveness of all performed adaptive analysis, proposed for conventional and stable GFEMs. All implementations provide responses that can meet the users\' pre-specified tolerance.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24062019-092920 |
Date | 01 April 2019 |
Creators | Bento, Murilo Henrique Campana |
Contributors | Proenca, Sergio Persival Baroncini |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds